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Abstract

A current goal in volume graphics is a volume rendering algorithm
that provides an elegant and controllable tradeoff between image
quality and rendering speed. In this report we propose a slice-based
volume rendering algorithm which attempts to address this goal.
We describe both the basic algorithm and several ways that it can
operate in an incremental and an adaptive manner.

1 Introduction

The proposed sliced-based algorithm attempts to apply volume ren-
dering to real-time, interactive graphics. Volume rendering is fun-
damental to volume visualization, which deals with the communica-
tion of diverse volumes of data including scalar, vector, tensor, and
multi-modal [Elvins92] and is fundamental to all scientific fields.
Although a real-time volume rendering algorithm would be of gen-
eral value, a virtual medical environment is the current motivation
of this research. Such environments are currently used for diag-
nostic medicine, surgical planning for orthopedic prosthesis, and
radiation treatment planning. The bottleneck in these applications
is rendering 3D images [DeFanti87].

In addition such an environment would be useful for general
medical diagnoses and planning, as well as education. We espe-
cially see value in the training of medical students in areas such
as anatomy where either the anatomical structures are difficult to
visualize from the 2D cues used in standard textbooks, or exam-
ples of anatomical structures do not correspond to real structures in
humans, as results from the use of models or cadavers.

To support the goal of real-time volume rendering, the algorithm
needs to have the following features:

1. The rendering must occur in “real time” where this is defined
as quick enough that a user has a sense of interaction. If neces-
sary the algorithm must tradeoff image quality for rendering
speed. As hardware inevitably becomes faster this tradeoff
will become less and less deleterious to image quality.

2. The rendering must be incremental or adaptive. For speed a
lower quality image may be displayed at first, but then the al-
gorithm must be able to enhance image quality at the expense
of further CPU resources.

3. The rendering must occur in the background during user
pauses. The effect should be a (possibly) lower-quality image
that appears immediately but which is replaced by a higher-
quality image if the user does not change the viewing param-
eters for a length of time.

2 Background

Numerous volume rendering algorithms have been proposed. These
can be classified into two broad categories based on the primitive

rendered: surface fitting and direct volume rendering. In addition,
the direct volume rendering algorithms can be further classified by
the general approach used: forward projection, backward projec-
tion, and hybrid methods [Elvins92].

2.1 Surface Fitting

A class of volume rendering algorithms fit a 2D surface to points in
the volume with a particular data value, and then render this surface.
Among the early techniques are the opaque cube or cuberille meth-
ods [Herman79], where voxels containing the data value of interest
are rendered as small individual cubes. Another early technique is
contour-connecting [Keppel75] [Fuchs77], where closed contours
at the data value are traced in adjacent volume slices and then con-
nected with a 2D surface. A current and widely used method is
marching cubes [Wyvill86] [Lorensen87], where cubes are fit to
the data value of interest and then tessellated with triangles. Closely
related are the marching tetrahedra [Shirley90] and dividing cubes
[Cline88] algorithms which instead of cubes fit the data with tetra-
hedra and sub-pixel sized points respectively.

All surface fitting algorithms have the good property that once
the surface is fitted it can be quickly rendered with current graphics
hardware. They all suffer, however, in that they can only display
discrete data values; they are poor methods for visualizing a range
of values. And they suffer from sampling errors and artifacts, such
as false positive and false negative values, which can be incorrectly
interpreted as valid data.

2.2 Direct Volume Rendering

Another class of volume rendering algorithms directly render each
voxel as a small cube of a semi-transparent material. These cubes
are drawn onto the image plane, with the contribution of each at-
tenuated according to the cube’s distance from the image plane —
closer cubes are attenuated by a small amount, while distant cubes
are attenuated more. Thus the final image does not contain a hard or
explicit surface, but instead appears to be constructed from layers
of semi-transparent gels.

Since they do not attempt to fit a surface, direct volume rendering
algorithms can be implemented free of the sampling errors that arise
when a binary decision is made about the existance of a surface at
each voxel. They are also well suited to display a range or a smooth
variance of data values, and they can display thin, wispy objects that
would be difficult to fit with a surface. They suffer the disadvantage
that rendering requires processing every voxel in the data set.

2.2.1 Forward Projection

Forward projection direct volume rendering algorithms operate in
object order: they process the voxels of the volume sequentially
and access the pixels of the image plane in random order. Two ap-
proaches are the splatting [Westover90] and the v-buffer [Upson88]
methods. These transform each voxel into image coordinates, and
then determine the pixels on the image plane covered by the voxel’s
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projection. The image is thus composited voxel by voxel on the im-
age plane. With the slice shearing [Drebin88] method, the entire
volume is first transformed into the viewing pyramid, and then re-
sampled into image coordinates. Then each slice parallel to the
image plane, starting with the rear, is composited with the slice im-
mediately in front, until composition with the first slice results in
the rendered image.

2.2.2 Backward Projection

Backward projection or ray tracing direct volume rendering algo-
rithms operate in image order: they process the pixels of the image
plane sequentially and access the voxels of the volume in random
order. Among the methods are [Tuy84], [Levoy88], [Upson88],
and [Levoy90]. These algorithms transform a ray from each pixel
into object coordinates, and then calculate the pixel’s value by com-
positing the voxels intersected by the ray. The contribution of each
voxel is attenuated according to it’s distance along the ray; farther
voxels are attenuated more than closer voxels.

A backward projection algorithm may not visit every voxel in
the volume, especially if the rays are divergent as happens with a
perspective viewpoint. In this case every voxel in the data set is not
visited and hence the algorithm may run faster than a forward pro-
jection approach. However in some sense the resulting image is not
as “good” as a forward projection in that the image is less accurate
since it is based on less information (fewer voxels). The resolution
of backward projection can be increased so that the rays visit every
voxel, but in this case the complexity becomes equivalent to that
of forward projection — every voxel must be visited to render the
image; the order of this visitation is the only difference.

2.2.3 Hybrid Methods

A hybrid method with respect to the methods above is one that op-
erates in neither strict object nor strict image order, but instead in
some intermediate order. The sliced-based method proposed in this
report falls into this category.

3 Basic Algorithm

The sliced-based algorithm represents a new method of combining
forward and backward projection. The image plane is projected
into and intersected with the volume at regular intervals. The result
is a list of polygons parallel to the image plane that can be rendered
with any polygon rendering engine. The algorithm consists of the
following steps:

1. Project image plane to produce cut planes.

2. Intersect cut planes with volume to produce polygon list.

3. Render polygon list.

3.1 Calculate Cut Planes

In the first stage of the sliced-based algorithm the view ray is con-
structed. It originates at the eye point and passes though the center
of the volume. At intervals along this ray cut planes are produced.
These planes are perpendicular to the view ray and parallel to the
image plane (see figure 1).

Considerations:

� The view ray forms the normal of all the cut planes. Thus
from the implicit equation for a plane
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Figure 1: Construction of view ray and cut planes.
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Figure 2: Intersecting a cut plane to produce polygons.

the normal vector �� � ��� remains fixed, and all the cut
planes are produced by varying �. This may facilitate inter-
secting the cut planes with the volume.

3.2 Intersect Cut Planes

In the second stage of the algorithm, each cut plane is intersected
with the voxels of the volume (see figure 2). A polygon is produced
at the intersection between the cut plane and each voxel.

Figure 3 details the formation of a polygon from the intersection
of a cut plane with a voxel. The color and normal of each polygon
vertex are determined by interpolation from the two nearest voxel
vertices.

Considerations:

� An efficient cut plane-voxel intersection algorithm is needed
— we don’t want to consider each voxel separately, which
would be �����. The implicit plane equation can be used to
tell which side of a cut plane a given voxel is on. This suggests
running down a beam of voxels along one axis of the volume
raster to find where the beam intersects the cut plane. Then a
filling algorithm can be used to find other voxels intersected
by the same cut plane, such as those that appear in [Yagel92]
and [Fujimoto86].
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Figure 3: Formation of a polygon.
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Figure 4: A normal and a color are produced for each polygon ver-
tex. Normals of polygon vertices will not necessarily be coplanar.

� Coherency is available between successive voxels intersected
with the same cut plane — polygon vertices and edges are
shared between adjacent intersected voxels. The sliced-based
algorithm must take advantage of this for efficiency consider-
ations.

� The intersection of a cut plane with each voxel will produce
a series of intersection possibilities similar to those encoun-
tered in the marching cubes algorithm [Lorensen87]. March-
ing cubes uses a case table to efficiently handle the different
intersection possibilities. A similar structure can be used for
the sliced-based method.

3.3 Render Polygons

In the third stage of the algorithm, the polygons produced from the
second stage are rendered with a polygon rendering engine. For
speed a hardware polygon renderer will be used.

Considerations:

� The sliced-based algorithm assumes the partial volume effect,
and thus the values at the vertices of the voxels represent point
samples of a continuously varying 3D scalar field. The algo-
rithm will not render volumes of boolean voxels.

� Because of the partial volume effect, both the color and the
normal at each polygon vertex will be determined by inter-
polation from surrounding voxels (see figure 4) as opposed
to calculated from the polygon itself. Thus as the polygon is
rendered it will be necessary for the polygon renderer to in-
terpolate both the normal and the color across the face of the
polygon — e.g. both Gaoraud and Phong shading must be
supported by the rendering hardware.

� To solve the hidden voxel problem the list of polygons must be
rendered semi-transparently in front-to-back order. This must
be supported by the rendering hardware.

4 Adaptive/Incremental Considerations

Forward projection algorithms are ����� complexity, since they
process each voxel. Backward projection algorithms are O����,
and also ����� if every voxel in the volume is sampled by (at least
one) ray. Hopefully the sliced-based algorithm can operate in an
adaptive/incremental manner and therefore beat this ����� com-
plexity. Even if it cannot do better than ����� then perhaps it can
still adapt the � to allow real-time interaction.

If there are enough cut planes that every voxel is intersected by at
least one of them, then the sliced-based algorithm becomes compa-
rable to a forward projection algorithm, and the two methods should
produce identical images. This suggests a possible evaluation cri-
teria: when applying adaptive/incremental techniques when is the
generated image identical to one produced by a forward projection
algorithm? As the sliced-based algorithm adaptively/incrementally
decreases the sampling rate of the volume when does the image be-
gin to degrade? Comparing the generated image pixel by pixel with
one rendered from a forward projection algorithm can serve as an
image quality metric.

4.1 Volume Resolution

A powerful method to speed up the algorithm is to incrementally
alter the resolution of the volume raster. First the sliced-based al-
gorithm is applied to a low-resolution volume (e.g. ���) and then to
successively greater resolutions (�	�� 
���), etc. The rendering of
the lower resolutions directly affects the � in the complexity metric
and will lead to increased performance at the cost of image quality.

Considerations:

� Building these lower resolution rasters is a ����� task for
each (although the � will shrink each time), which implies
that they must be pre-calculated before rendering begins. The
original raster could either be resampled with a voxel grid of
arbitrary resolution or the 8 vertices of each voxel could be
averaged into 1 vertex.

� This method also uses more memory than just keeping the
original raster.

� This method is superior to methods that adapt to measures of
image plane complexity such as [Levoy90b] or [Whitted80].
These methods point sample the volume raster and there-
fore can miss small but bright objects. In contrast, with this
method the lower resolution rasters contain all the object in-
formation, abet in a low (blurry) resolution manner.

4.2 Sampling Distance Between Cut Planes

The second method to reduce complexity is to alter the distance be-
tween cut planes. Each cut plane is expected to contribute O(

�
���)

to the time complexity (see section 5.1). As the distance between
them rises and fewer cut planes are used the algorithm will become
faster.

4.2.1 Periodic Sampling

The interval at which cut planes are produced along the view ray
can be varied. It could be regular (figure 5a), or the portion of
the volume closest to the eye point could be sampled more fre-
quently than the farther portion (figure 5b), or other sampling meth-
ods could be devised.
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(a) (b)

Figure 5: Sampling rate of cut planes in volume raster.

4.2.2 Adaptive Sampling

Another method is to only sample those slices of the volume raster
that contribute the most to the final image. This would quickly
build image quality by intelligent placement of cut planes. Once
the image quality reaches a certain threshold, the algorithm would
forego the remaining cut planes. For example the algorithm could
sample the raster sparsely (figure 5a) and then fill in the gaps based
on the object complexity of different areas of the volume raster.

Considerations:

� This method requires some sort of complexity measure of the
voxel data set. This measure would be taken as polygons are
formed from each cut plane.

4.3 Sampling Within a Cut Plane

The third method to reduce complexity is to alter the number of
polygons which are produced from each cut plane. This would re-
duce the O(

�
���) complexity per cut plane (see section 5.1).

4.3.1 Adaptive Polygon Generation

Each cut plane can be adaptively sampled like the Whitted method
of adaptive supersampling of ray-traced scenes [Whitted80], as de-
tailed in figure 6.

4.3.2 Generating One Polygon per Voxel

As described in section 3 and figure 2, the cut plane can generate
one polygon for every voxel it intersects.

Considerations:

� The previous methods form a tradeoff between the number
of polygons produced, which affects time, and the sampling
density of the cut plane, which affects image quality. How-
ever, it is likely that the one polygon per voxel method can
be based on integer operations, while the adaptive polygon
generation method will be based on floating point operations.
Thus the overhead of adaptive polygon generation may make
it no faster than generating one polygon per voxel.

5 Discussion

5.1 Algorithm Complexity

The complexity of generating the view ray and the cut planes should
be negligible; perhaps a function of one dimension of volume size
(O(�)). I believe the complexity of generating polygons from a cut

(a)

(c) (d)

Cut Plane

(b)

Figure 6: Adapting the number of polygons generated from each
cut plane. (a) The cut plane in the volume raster. (b) Sparse point
samples in the cut plane. (c) Additional point samples adaptively
added. (d) The samples tessellated into polygons.

plane will be O(
�
���), as this is an upper bound on the number

of voxels intersected by a plane intersecting a voxel raster at an
arbitrary angle.

5.2 Compare with Levoy’s Criteria

[Levoy90b] describes a method to adaptively refine images of ray-
traced volume data. He critiques his method with 3 criteria of
refinement techniques for adaptive rendering environments. The
sliced-based method analyzed by these criteria yields:

1. Work is distributed according to where it makes the most
difference. This is addressed in two ways: 1) the adaptive
consideration of where to place the cut planes and 2) the adap-
tive formation of polygons within each cut plane.

2. Intermediate images are formed from partial information.
This is addressed in two ways: 1) sampling lower resolution
rasters and 2) viewing each cut plane as it is calculated, e.g.
the user views the image plane continuously as each cut plane
is composited with it. For example in figure 5b the volume
raster is sampled more frequently in the areas close to the
view point, which may provide adequate image quality even
though the whole volume raster has not been sampled. The
user would see these cut planes composited with the image
plane in front-to-back order.

3. The amount of work discarded after the formation of each
image is minimized. This is not addressed by the sliced-
based method.

5.3 Image versus Object Complexity

Existing adaptive refinement algorithms (e.g. [Levoy90b]
[Whitted80]) use measures of image complexity to drive where ef-
fort is extended in rendering the image. In contrast, the proposed
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Figure 7: Using templates to intersect a cut plane with the volume
raster. The view ray is determined by a 1D template, from which
the 2D template of the cut plane samples the volume.

adaptive refinements to the sliced-based algorithm use measures of
object complexity to drive where additional effort is placed. Thus
the sliced-based algorithm adapts to the 3D volume itself, as op-
posed to the volume’s 2D projection. Since there is much more
data in a 3D than a 2D extent, we expect this adaptation to be more
accurate.

5.4 Future Enhancements

5.4.1 Use of Templates

Intersecting each cut plane with the volume raster could use a 2D
template (figure 7), similar to the templates from [Yagel92]. Such a
template would only have to be computed once for a given view and
volume raster resolution, and then could be “slid” into the volume
along the view ray.

Since the production of polygons from a cut plane intersection
will dominate processing time, efforts to expedite this section of
the algorithm are important. These templates determine sample po-
sitions from look-up tables, and are thus based on integer operations
whereas other methods are based on floating point operations. This
is expected to yield speed benefits.

5.4.2 Support for Perspective Viewpoint

As described, the sliced-based method yields an orthogonal view of
the volume raster (figure 1). However, it could also support a per-
spective viewpoint by scaling the polygons according to a perspec-
tive transformation — those close to the viewpoint would be larger,
while those far away would be smaller. The [Drebin88] method
achieves a perspective view in a similar manner: it uses the per-
spective transformation to resample the volume raster.

5.4.3 Use of Existing Polygon List

When the viewpoint changes, the whole sliced-based algorithm is
repeated — the volume raster is resampled with cut planes and a
new polygon list is generated. In particular the old polygon list
from the former view point is thrown away. It may be possible
to reuse these old polygons. When the viewpoint changes, they
could be rotated and scaled to yield a quick yet lower-quality image.
The user could view this while the new polygon list is generated.
As soon as they were ready a higher-quality image from the new
polygon list would replace the image from the old.
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