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Abstract

This report describes a collision detection system which uses the N-objects octree algorithm.  This
technique is described by Shaffer & Herb in an unpublished report [1991], and subsequently
published in IEEE Transactions on Robotics and Automation [Shaffer & Herb 1992].  The algorithm was
developed and tested with the Hook [1992] animation system.  The algorithm and its
implementation are described, with particular attention to the design of the octree component as an
abstract data type (ADT).  In addition, timing test results are reported.
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1 Introduction

1.1 The Collision Detection Problem

Cameron [1990] describes the collision detection problem succinctly: given some objects and desired
motions, do the objects come into contact during the time span needed to complete the motions?  The
solution to this problem is useful in robotics, animation, simulation, and other problem domains.
For example, Moore & Wilhelms [1988] note that with many keyframe animation systems the
animator must examine the animation frame-by-frame to determine if objects are colliding.  Collision
detection can automate this task and alert the animator.  There are also industrial applications:
Shaffer & Herb [1991] describe a system which detects when the arm of the space shuttle is about to
collide with objects or the walls of the shuttle’s equipment bay.

Given a set of objects and desired motions, Cameron [1985] gives three general techniques for
detecting collisions:

1) Divide the time necessary for the objects to complete their motions into small time intervals ti.
For each ti, perform static intersection testing between all objects.

2) Compute the volume swept out by each object during its motion, then test the resulting 3D
volumes for intersection.

3) Create a model of each object and desired motion in 4D space-time, and test the resulting 4D
shapes for collision.
The method reported in this paper is based on Cameron’s first approach.  In general, algorithms

using this technique are easy to implement, and are applicable to a wide variety of domains.  The
technique has a fidelity constraint, however: the distance objects move during each time interval
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must be small compared to their sizes and velocities.  If this constraint is not satisfied, then it is
possible for two objects to pass completely through each other during a time interval.

Another problem with the first technique is that typically the spatial ordering of objects does
not mirror their ordering in computer memory.  Thus to determine if any objects are colliding, it is
necessary to compare each object against every other object.  Since this is an inherently O(n2)
operation, with enough objects this comparison dominates execution time.  This problem motivates
the study of spatial data structures [Samet 1990A].  These impose a spatial structure on the objects,
where the spatial extent of this structure mirrors its ordering in memory.  The data structure groups
those objects that are close together in space, and thus a given object is only tested against
neighboring objects.

The system described in this report, hereafter referred to as the system, uses an N-objects octree
to impose a spatial ordering on a collision detection system.  The basic methods of building and
maintaining the octree are given by Shaffer & Herb [1991], while Samet [1990A] gives methods for
fast neighbor-finding.

1.2 Collision Response

The dynamics of a system govern colliding objects’ behavior.  The point of this work is the detection
of a collision, however, and not the response to a collision.  Thus, a very basic dynamics system was
developed: each object is given a direction vector and a velocity; at each time step each object moves
along its direction vector multiplied by its velocity.  When two objects collide, their direction vectors
are reversed.  These simple dynamics served to develop and test the collision detection system.

1.3 The Hook Implementation Platform

The system is implemented in the C language, using Hook [1992], a track-based animation system.
Hook contains both a command-line interface and a C-language programming interface; most
capabilities are available through either interface.  Hook contains an integer clock, which counts up
from zero towards infinity.  It loads objects represented as a connected mesh of polygons.  Each
object has a position track, which specifies a position at each clock tick.  When the clock is run, each
object is sequentially rendered at each position.

On SGI machines Hook uses the hardware-based GL library for rendering.  This gives fast, Z-
buffer quality images with a single light source and Gouraud shading [Rodgers 1985].  On Sun
machines Hook uses the Xlib library to render opaque objects with hidden lines.  It sorts all polygons
in increasing depth order from the eye point, and then draws them back-to-front using a painter’s
algorithm [Rodgers 1985].  When polygons cannot be uniquely sorted in depth order, the algorithm
paints them in an arbitrary order, which sometimes results in incorrect rendering (although Hook is
quite useful despite this).  Hook renders much faster on SGI than Sun machines.

Through its programming interface Hook provides a number of abstract data types (ADTs)
which are useful for graphics programming.  These include a linked list ADT, a matrix ADT, a
polygon mesh ADT, a quaternion ADT, a stack ADT, and a vector ADT.  Hook has additional
capabilities which are not used by this project [Hook 1992].
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Hook greatly facilitated the project by providing a platform for object loading, viewing, and
rendering, with an easy programming interface.  The author was free to concentrate on the collision
detection project, without having to develop code to view or render objects.

1.4 Exhaustive Collision Detection

The system contains an exhaustive collision detection algorithm influenced by the work of Hahn
[1988] and Moore & Wilhelms [1988].  Each object is tested against every other object, which is
inherently O(n2) in the number of objects.  The algorithm is hierarchical: to detect a collision between
a pair of objects, the system calls a series of partial decision mechanisms, each with increasing
computational complexity.  At the top of the hierarchy is a test for divergent axis-aligned bounding
boxes, which very quickly detects non-collision.  At the bottom of the hierarchy, each edge of one
object is tested against each polygon of the other, and vice versa.  This final test is a complete
decision mechanism: subject to the constraint given above (velocities are small compared to the size
of objects), the final test definitely detects either collision or non-collision.

2 The N-Objects Octree Algorithm

The N-objects octree works on top of the exhaustive collision detection algorithm.  A general octree
is a hierarchical data structure that recursively divides a cubic volume into eight sub-volumes until a
certain constraint is met.  The familiar implementation is a tree with an out-degree of eight, although
Samet also gives pointerless representations [1990A, 1990B].  The constraint varies and gives rise to
different types of octrees.  Perhaps the most common is the region octree: beginning with a cube that
encompasses all of the objects, the octree is decomposed until each leaf node either lies completely
within an object or is completely empty.  In contrast, my system uses an N-objects constraint: the
octree is decomposed until each leaf node contains no more than N objects.  The N-objects octree has
been used by various researchers [Shaffer & Herb 1991]; Figure 6 shows an example of an N-objects
octree with N = 2.

2.1 The Octree ADT Interface

In order to increase its reusability, I implemented the octree as an abstract data type (ADT).  This
separates the octree from the implementation details of the current system.  For example, the fact
that Hook stores objects as a mesh of polygons is an implementation detail, and is not reflected in the
octree ADT.  The octree interface consists of two files: “octree.h”, and “neighbor.h”.

Octree Types and Operations.  In order to minimize the impact on a client program’s global
namespace, all of the data types and operations exported by the octree ADT are prepended with
‘oct’.  The basic octree types and operations are defined in the file “octree.h”.  It exports the two data
types octDirection and octNode (Figure 1).  An octDirection quantizes the possible directions in a
cubical lattice to the 26 which are defined by the faces, edges, and corners of a cube; the direction
names are taken from Samet [1990A].  The directions of the faces of a cube are L(eft), R(ight),
D(own), U(p), B(ack) and F(ront).  The directions of a cube’s edges are combinations of the two faces
that are incident on each edge: LD, LU, LB, LF, RD, RU, RB, RF, DB, DF, UB, UF.  And the directions
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typedef enum octDirection { /* Direction in the Octree sense */
   L, R, D, U, B, F, /* Face directions */

/* Edge directions */
   LD, LU, LB, LF, RD, RU, RB, RF, DB, DF, UB, UF,

/* Vertex directions */
   LDB, LDF, LUB, LUF, RDB, RDF, RUB, RUF,
   OMEGA /* Undefined direction */
} octDirection;  

typedef struct octNode; /* Octree node */

Figure 1: two data types exported by the octree ADT.
Primary Operations:

N     octCreate()              Create a new root node.
void  octDispose(N)            Recursively dispose of octree from node N.
void  octClear(N, kill)        Recursively remove items from root node N.
N     octParent(N)             Return parent of N.
N     octChild(N, O)           Return O child of N.
O     octChildType(N)          Return child type of N in octParent(N).
bool  octIsSplit(N)            Is N an internal or leaf node?
void  octSplit(N)              Split a leaf node; now it has children.
void  octJoin(N, kill)         Unsplit a leaf node; remove all children.
int   octGeneration(N)         Level in the tree of node N.
char* octData(N)               Access client data at node N.
char* octSwapData(N, data)     Swap client data at node N.
void  octInitChildIterator(N)  Initialize child iterator for node N.
bool  octNextChild(N1, N2)     Return next child N2 of parent N1.
void  octPrint(N, prnt, strm)  Print the subtree rooted at N.

Utility Operations:

Str   octDirToStr(Dir)         Return string representation of direction.
Dir   octStrToDir(Str)         Return direction representation of string.

Figure 2: The operations exported by the octree ADT.  N is a pointer to an octNode; O is a vertex
direction; kill is a pointer to a function that removes client data from a node;  data is a pointer to a
client data structure;  prnt is a pointer to a function that prints a client data structure; strm is a pointer
to an open FILE structure; Str is a string; and Dir is an octDirection.  Also see the appendix.

of a cube’s vertices are combinations of the three faces that are incident on each vertex: LDB, LDF,
LUB, LUF, RDB, RDF, RUB, RUF.  Finally, there is the undefined direction, OMEGA, which appears
in Samet [1990A] as the symbol “Ω”.

In C, each element of an enumerated type goes into the global namespace.  Note that the
octDirection type does not follow the convention given above of prepending all such symbols with
‘oct’.  I deemed that this was too cumbersome, and a future binding of the ADT is planned for C++,
where elements of an enumerated type do not pollute the global namespace.

An octNode (Figure 1) is a structure that represents each octree node.  Although defined in
“octree.h”, this structure is opaque: the client program is not supposed to reference or manipulate the
fields (much as the client of the “stdio.h” library is not supposed to access the fields of the FILE
structure).  Instead, the client uses the provided operations to manipulate octNode variables.  The
provided operations are shown in Figure 2, and in greater detail in the Appendix.  The primary

operations allow standard manipulations of octree nodes.  The utility operations, octDirToStr and
octStrToDir, are provided to facilitate reading in and printing out octDirections.  When possible,
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octDirection* Vector3ToDirection(Vector3 dir)
/* ensures: Vector3ToDirection(dir) points to a list of quantized
            octDirections that lie near 'dir'.  This list is capped with
            an OMEGA value; client code should loop until the OMEGA
            value is encountered. */
{
   int x_pos, y_pos, z_pos;
   static octDirection quantized_dir_table[8][8] = {
      /* X  Y  Z     Quantized Directions */
      /* R  U  F */  RUF, R, U, F, RU, RF, UF, OMEGA,
      /* R  U  B */  RUB, R, U, B, RU, RB, UB, OMEGA,
      /* R  D  F */  RDF, R, D, F, RD, RF, DF, OMEGA,
      /* R  D  B */  RDB, R, D, B, RD, RB, DB, OMEGA,
      /* L  U  F */  LUF, L, U, F, LU, LF, UF, OMEGA,
      /* L  U  B */  LUB, L, U, B, LU, LB, UB, OMEGA,
      /* L  D  F */  LDF, L, D, F, LD, LF, DF, OMEGA,
      /* L  D  B */  LDB, L, D, B, LD, LB, DB, OMEGA,
   };
   static int access_dir_table[2][2][2] = {0, 1, 2, 3, 4, 5, 6, 7};

   /* Quantize 'dir': R=0, L=1;  U=0, D=1;  F=0, B=1 */
   x_pos = (dir.x > 0) ? 0 : 1;  /* ? R : L */
   y_pos = (dir.y > 0) ? 0 : 1;  /* ? U : D */
   z_pos = (dir.z < 0) ? 0 : 1;  /* ? F : B */

   return(quantized_dir_table[access_dir_table[x_pos][y_pos][z_pos]]);
}

Figure 3: Operation to convert from a Vector3 direction into a list of quantized octDirections.

these operations are implemented in-line, which means the client does not lose efficiency from using
the provided operations instead of accessing the octNode fields directly.

Quantizing a Direction.  Note that any client of the octree ADT must provide a method for mapping
the client implementation of a direction into an octDirection.  This method is not provided by the
octree ADT because different clients might have different ways of implementing a direction.  In my
implementation, the whole collision detection system is the client of the octree ADT.

In Hook, a direction is implemented as a Vector3 — a structure consisting of the three floating
point elements x, y, and z.  Figure 3 shows Vector3ToDirection, the operation that converts between a
Vector3 direction and an octDirection.  Essentially, the routine splits 3-space into two half-spaces
along each axis.  If the x-component is greater than 0, the direction is R(ight), otherwise it is (L)eft.
Likewise, if the y-component is greater than 0, the direction is U(p), otherwise it is (D)own.  And if
the z-component is greater than 0, the direction is B(ack), otherwise it is (F)ront.  Based on these
computations for each major axis, Vector3ToDirection returns a list of the octDirections that lie
approximately within the half-space containing the Vector3 direction.  Note that there is nothing
inherently correct about these particular assignments; they simply happen to match Hook’s rendered
images.  Other mappings would also work.

Neighbor-Finding Operations.  Samet [1990A] gives elegant and efficient methods for finding the
neighbors of an octree node.  This is a non-trivial problem because the structure of an octree does not
provide neighbor information: spatially adjacent nodes of an octree might be far apart in the tree’s
hierarchy.  In the octree ADT, the octDirection data type forms the basis of the neighbor-finding
operations.  Figure 4 gives the neighbor-finding operations exported in the file “neighbor.h” (also see
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Low-Level Neighbor-Finding Operations

bool octAdj(I,O) True iff O is adjacent to direction I.
O    octReflect(I,O) Return vertex reflected in direction I from O.
face octCommonFace(I,O) Return face common to O in direction I.
edge octCommonEdge(I,O) Return edge common to O in direction I.

Neighbor-Finding Operations

N    octGtEqFaceNeighbor(P,I) Return P’s >= face neighbor in direction I.
N    octGtEqEdgeNeighbor(P,I) Return P’s >= edge neighbor in direction I.
N    octGtEqVertexNeighbor(P,I) Return P’s >= vertex neighbor in direction I.

Figure 4: The neighbor-finding operations exported with the octree ADT.  I is an octDirection; O is a
vertex direction; bool is a boolean value; face is a face direction; edge is an edge direction; N, P are
pointers to octNodes.  Also see the appendix.

the Appendix).  For a given node P, the neighbor-finding operations return a face, edge, or vertex
neighbor in direction I from P.  In general, each of the neighbor-finding operations ascend the octree
until finding the common ancestor of node P and its neighbor N, and then descend the octree until
finding the neighbor.  The neighbor-finding operations are built on top of four more primitive
operations: Adj, Reflect, CommonFace, and CommonEdge, which return various types of information
about the neighborhood of node O in direction I [Samet 1990A, page 87].  Although the collision
detection system does not call these primitive operations directly, they are exported in case the client
needs to make use of them.

The implementation of these primitive operations are why Samet’s neighbor-finding techniques
are so fast, and why it is necessary to quantize a general direction into 26 directions.  Each primitive
operation is implemented as a table lookup, indexed by its two arguments [Samet 199A, pages 88–
90].  Thus, they operate in constant time, and do not reference the octree’s representation.

2.2 Building the N-Objects Octree

Initially, the collision detection system begins with one large octree node, the root node, which spans
the whole scene.  The objects are added one-by-one to the root.  When the N+1st object is added, the
root splits into sub-nodes and inserts its objects into each sub-node.  After this splitting, the root
inserts all subsequent objects (N+2, N+3, etc.) into its sub-nodes.  Each node in the tree follows this
same recursive algorithm.  Thus, after all the objects have been added to the root, only the leaf nodes
contain objects, and each leaf node contains no more than N objects.

Some method is needed to compute the initial size of the root node.  In order to detect collisions
between objects, the root node needs to encompass the whole space that will be traversed during the
desired object motions.  The current system uses this heuristic: the root node is set to 150% of the size
of the bounding box of all of the objects in their initial positions.  This heuristic is flawed, however: it
is easy to construct a scenario where objects travel beyond the root node and then collide.  In general
it is difficult to determine the root’s initial size since, depending on the system’s dynamics, collisions
may alter the direction and velocity of objects.
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Figure 5:  The first frame in a three-frame sequence with N = 2.  The outer objects are both traveling
towards the central object.  Here the right-hand object is about to cross the middle dividing plane.  When
it does, the left hand nodes must split to follow the constraint of only 2 objects per node.

2.3 Detecting Collisions

At each time step, the system uses the octree to reduce the number of object pairs tested for collision.
The system searches the octree depth-first, looking for leaf nodes which contain more than 1 object.
For each such node, the node’s objects are given to the exhaustive collision detection algorithm.  For
efficiency, the system prevents multiple instances of two objects being tested in the same time step.
It maintains a square table of size NO2, where NO is the number of objects.  For each pair of objects,
this table records the last time step when they have been collision tested.  For a given pair of objects,
if the current time step is equal to the value in the table, the objects have already been tested.

2.4 Splitting and Merging Nodes

As objects move, they enter some octree nodes and leave others.  The octree splits and merges nodes
as necessary to maintain the N-objects constraint.  Figure sequence 5–7 shows an octree splitting and
then merging to maintain the constraint N = 2.

At each time step, after all the objects have moved, the system loops through each object, and
for each object loops through all the nodes that the object spans.  For each node, the system performs
two checks:

1) A check for the object leaving the node.  When this happens, the system deletes the object from
the node, and if the node and its siblings now contain N objects, it merges the siblings together
into the parent node.

2) A check for the object entering a neighbor of the node.  The system uses the neighbor-finding
operations to test if the object has entered any neighbors in the direction of the object’s motion.
For each such neighbor, the system adds the object to the neighbor, and if the object is the N+1st
to be added, splits the neighbor.
The above testing could potentially be expensive, and thus the system uses two methods to

reduce the amount of testing required.  First, the system tests if the bounding box of an object lies
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Figure 6: The second frame.  Here the right-hand object has crossed the diving plane, resulting in two
additional levels of decomposition.

Figure 7: The third frame.  Here the right- and left-hand objects have bounced off of the central object,
and are now heading outward.  Since the right-hand object has now re-crossed the diving plane, the two
additional levels of decomposition are no longer needed, and the leaf nodes merge back into their parent
nodes.

completely within a node.  This is frequently the case, and the test that detects it is very fast.  When
true, the object lies completely within the node, and neither of the above tests are necessary.  Second,
the system maintains a counter which is updated for each time step, for each object; this counter is
associated with each octree node.  The counter quickly tells the system if it has already tested a given
neighbor node and a given object.  This is necessary for an object which spans multiple nodes,
because the neighbor sets of these nodes overlap.  It would be inefficient for the system to check for
entry into the same neighboring node multiple times.

3 Timing Results

The motivation for the N-objects octree was to reduce the O(n2) processing time required by the
exhaustive collision detection algorithm.  I ran a series of timing tests to measure the magnitude of
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Figure 8: A frame from the test set t3, which contains 98 objects.  The planes of objects to the right and
the left move towards each other and bounce off.

time in seconds to perform collision detection
test set t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

num objects 2 18 50 98 162 242 338 450 578 722 882

N = 5 2.55 12.1 33.9 72.9 120 192 255 344 447 571 726
N = 10 2.85 11.8 34.3 70.8 118 178 246 333 448 559 688
N = 30 2.77 13.6 33.7 70.3 117 181 250 337 443 550 693
N = 50 2.86 12.2 33.9 72.1 116 178 250 337 443 559 674
N = big 2.49 11.9 33.6 69.2 116 183 266 377 474 625 791

Table 1:  The time in seconds needed to compute dynamics and collision detection for 200 time steps, for
each test set.  The first row gives the name of the test set; the second row gives the number of objects in
that test set.  The remaining rows vary N, the maximum number of objects in each octree node.  In the
last row the value of N is set to a number much larger than the number of objects in the largest test set.  
This effectively turns off octree partitioning, and thus gives the running time for the exhaustive collision
detection algorithm.

this reduction and to determine, within the Hook system, the algorithm’s parameters: above what
number of objects does the octree result in substantial time savings?  What is a good value for N?

3.1 Method

I developed a script which procedurally generates test sets that are loaded into Hook and used with
the collision detection system.  A screen shot from one of these sets is shown in Figure 8.  The sets
consist of two parallel planes of cubes which move towards each other and bounce off in the middle.
Each plane consists of a central cube surrounded by concentric rings of cubes; each ring is offset
slightly from the middle.  The name and number of objects contained in each set are given in the first
two rows of Table 1.  The script’s parameter is the number of rings to generate, which is reflected in
the name of each test set.  Set t0 consists of only the two central cubes, which run into each other.  Set
t1 consists of the two central cubes, each surrounded by a ring of 8 cubes, resulting in 18 cubes total.
Test set t3, shown in Figure 8, consists of the central cubes surrounded by three rings, resulting in 98
objects.

Timing data was collected on a Silicon Graphics IRIS Crimson workstation, model number W6-
JUR64VGXT, with one 75 MHZ IP17 Processor and 80 Megabytes of main memory.  For each test set,
the collision detection system was executed for 200 time steps.
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Figure 9: Test set size verses time to perform collision detection.  This is a graph of all the data in Table 1.
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3.2 Data

The resulting data is the number of seconds required to run the collision detection system on each
test set.  The data is given in Table 1, and summarized in Figures 9 and 10.  Figure 9 graphs all the
data; each line represents the collision detection time for various values of N.  For the largest value,
labeled ‘big’, N is larger than the number of objects in the largest data set, which is equivalent to
using only the exhaustive algorithm.  In Figure 9 there is no discernible difference until the
338-object test set.  Figure 10 shows only the right-hand side of the data in Figure 9; here the trends
are more noticeable.  As the test set size increases, the time for the exhaustive algorithm increases
faster than the time for the other cases.  By the final 882-object test set, the exhaustive case takes the
most time, followed by the N = 5 case, followed by the N = 10 and N = 30 cases (which overlap), and
closely followed by the N = 50 case.

3.3 Analysis

By the 882-object case it appears that the exhaustive case is the worst, the N = 50 case is the best, and
the other cases fall in the middle.  However, the trends are not strong enough to suggest statistical
significance, and I did not apply significance testing.  Hence it is not possible, from this data, to
conclude that the octree method is better than the exhaustive method, nor is it possible to determine
the optimal value of N for these test sets.

4 Conclusions

The N-objects octree algorithm of Shaffer & Herb [1991] has been implemented using the Hook
platform.  Although theoretically the octree should run faster than the exhaustive collision detection



OSU-ACCAD-12/93-TR7 Page 11

Figure 10: Test set size versus time to perform collision detection.  This is a graph of the right-hand side
of Figure 9.
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system, the timing data collected so far is inadequate to support this.  The octree has been
implemented as an ADT, which permits the bulk of the current effort to be reused in other projects.

In future work I would like to investigate the small difference in running times between the
exhaustive and the octree algorithms.  I suspect this occurs because even though the O(n2) term in
the exhaustive algorithm is asymptotically dominant, the system contains very large constant terms,
and the current test sets are too small to reveal differences larger than these terms.  I suspect that at
least part of these terms come from the maintenance of the many linked lists that are associated with
the octree.  And the internal workings of Hook may add additional terms.  I expect that through
profiling and study I could reduce these constant terms, and then I would see a greater difference
with the current test sets.  Or, larger test sets could be used.  At the least, this second option requires
structuring the system so the testing is script-driven and non-interactive.

I would also like to implement the octree ADT in C++, for use in projects which are already
implemented in C++.
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Appendix — Octree ADT Operations

This appendix contains a detailed description of the octree ADT operations.  For each operation a
prototype clause, an optional requires clause, and an ensures clause is given.  The prototype clause gives
the operation’s name, and the data types of the operation’s return value and arguments.  The requires

clause gives restrictions on the values of the arguments; these restrictions are assumed by the
operation, and are necessary for its valid execution.  The ensures clause states what the operation will
achieve, in terms of its arguments, under the assumption that the requires clause is met.

The octree ADT comes in two implementations: a defensive implementation, and an efficient

implementation.  The defensive implementation, which is the default, tests that requires clauses are
met by means of assert(3) statements.  As a result of this error-testing, certain operations which could
otherwise be implemented in-line are instead implemented as function calls.  The efficient

implementation, which is compiled when the symbol “NDEBUG” is defined, removes all such error
checking, and in-lines all operations for which inlining is possible.

Client-Supplied Operations

prototype: void ItemDisposer(char* data)
 requires: data access a client data structure.
  ensures: data is disposed; any allocated memory is returned.

prototype: void ItemPrinter(FILE* strm, char* data)
 requires: strm is an open FILE*, data accesses a client data structure.
  ensures: A textual representation of data is printed to strm.

Primary Operations

prototype: octNode* octCreate(void)
  ensures: Returns a pointer to a new octree root node.
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prototype: void octDispose(octNode* N)
 requires: octParent(N) == NULL.
           The octree rooted at N is empty of client data.
  ensures: The octree rooted at N is disposed.

prototype: void octClear(octNode* N, ItemDisposer* kill)
  ensures: All the client data in the subtree rooted at N is removed, making
           it an empty subtree.

prototype: octNode* octParent(octNode* N)
  ensures: octParent(N) == N's parent, or NULL if N is a root.

prototype: octNode* octChild(octNode *N, octDirection O)
 requires: O is a vertex.
  ensures: octChild(N, O) == N's O child, or NULL if N is a leaf.

prototype: octDirection octChildType(octNode* N)
  ensures: If N is a root node, octChildType(N) == OMEGA. Otherwise,
           octChildType(N) == the child type of N in octParent(N).

prototype: boolean octIsSplit(octNode* N)
  ensures: octIsSplit(N) == TRUE if N is an internal node;
           octIsSplit(N) == FALSE if N is a leaf node.

prototype: void octSplit(octNode* N)
 requires: octIsSplit(N) == FALSE.
  ensures: octIsSplit(N) == TRUE; N is split and given children.

prototype: void octJoin(octNode* N, ItemDisposer* kill)
 requires: octIsSplit(N) == TRUE.
           kill != NULL or the subtree rooted at N is empty of client data.
  ensures: octIsSplit(N) == FALSE; N's children are cleared of any
           client data and removed.

prototype: char* octGeneration(octNode* N)
  ensures: octGeneration(N) == the generation of node N.  The generation
           of the root node is 0, the root's children are 1, their
           children are 2, and so on.

prototype: char* octData(octNode* N)
  ensures: octData(N) == the client data stored at node N.

prototype: char* octSwapData(octNode* N, char* newData)
  ensures: The pointer to client data newData is swapped with N's current
           client data pointer, which is returned.

prototype: void octInitChildIterator(octNode* N1)
 requires: octIsSplit(N1) == TRUE
  ensures: An iterator is initialized that allows every child of N1 to
           be visited.

prototype: boolean octNextChild(octNode* N1, octNode** N2)
 requires: octInitChildIterator(N1) has been called.
  ensures: octNextChild(N1, N2) == TRUE if *N2 is a pointer to a child
           node of N1 which has not been visited since child iterator
           initialization; otherwise all children have been visited and
           FALSE is returned.

prototype: void octPrint(octNode* N, ItemPrinter* prnt, FILE* strm)
 requires: prnt is an ItemPrinter or NULL, strm is an open FILE*.
  ensures: A textual representation of the subtree rooted at N is printed to
           strm using prnt to print the data located at each node.
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Utility Operations

prototype: char* octDirToStr(octDirection Dir)
  ensures: octDirToStr(Dir) is a string representation of Dir.

prototype: octDirection octStrToDir(char* Str)
 requires: Str is a valid upper- or lower-case string representation of a
           direction.
  ensures: octStrToDir(Str) is the octDirection representation of Str.

Low-Level Neighbor-Finding Operations

prototype: boolean octAdj(octDirection I, octDirection O)
 requires: O is a vertex.
  ensures: octAdj(I,O) == TRUE iff O is adjacent to the Ith face, edge,
           or vertex of O's containing block.

prototype: octDirection octReflect(octDirection I, octDirection O)
 requires: O is a vertex.
  ensures: octReflect(I,O) yields the CHILDTYPE value of the block of
           equal size (not necessarily a sibling) that shares the Ith
           face, edge, or vertex of a block having CHILDTYPE value O.

prototype: octDirection octCommonFace(octDirection I, octDirection O)
 requires: I is an edge or a vertex, O is a vertex.
  ensures: octCommonFace(I,O) yields the type of the face of O's
           containing block, that is common to octant O and its neighbor
           in the Ith direction.

prototype: octDirection octCommonEdge(octDirection I, octDirection O)
 requires: I is a vertex, O is a vertex.
  ensures: octCommonEdge(I,O) yields the type of the edge of O's
           containing block, that is common to octant O and its neighbor
           in the Ith direction.

Neighbor-Finding Operations

prototype: octNode* octGtEqFaceNeighbor(octNode* P, octDirection I)
 requires: I is a face.
  ensures: If such a node exists, octGtEqFaceNeighbor(P,I) == the
           face-neighbor of node P, of size greater than or equal to P,
           in direction I.  Otherwise, octGtEqFaceNeighbor(P,I) ==
           NULL.

prototype: octNode* octGtEqEdgeNeighbor(octNode* P, octDirection I)
 requires: I is an edge.
  ensures: If such a node exists, octGtEqEdgeNeighbor(P,I) == the
           edge-neighbor of node P, of size greater than or equal to P,
           in direction I.  Otherwise, octGtEqEdgeNeighbor(P,I) ==
           NULL.

prototype: octNode* octGtEqVertexNeighbor(octNode* P, octDirection I)
 requires: I is a vertex.
  ensures: If such a node exists, octGtEqVertexNeighbor(P,I) == the
           vertex-neighbor of node P, of size greater than or equal to
           P, in direction I.  Otherwise, octGtEqVertexNeighbor(P,I) ==
           NULL.
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