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Abstract

Reconstruction is imperative whenever an image needs to be resampled as a result
of transformation such as an affine or perspective transform, or texture mapping.
We present a new method for the characterization and measurement of reconstruc-
tion error. Our method, based on spatial domain error analysis, uses approximation
theory to develop error bounds. We provide, for the first time, an efficient way to
guarantee an error bound at every point by varying filter size. We go further to sup-
port position-adaptive and data-adaptive reconstruction which adjust filter size to
the location of reconstruction and the datain its vicinity. We demonstrate the effec-
tiveness of our methods with 1D and 2D examples.

1. Introduction

Reconstruction is the process of recovering a continuous function from a set of samples. It is one
of the fundamental operationsin computer graphics and image processing. Many agorithms, such
as texture mapping, image transformation (e.g., rotation, scaling), and volume rendering, trans-
form araster (2D or 3D) from a source space to atarget space. All these algorithms must recon-
struct the underlying function in source space before transforming it to target space, where
resampling takes place. The work described here is aimed to give the user, for the first time, the
ability to set a point-wise error bound. Unlike existing methods which use frequency domain anal-
ysis to guarantee some global error bound, we use spatial domain error analysis to guarantee that,
for agiven threshold €, the difference between the reconstructed function and the real function is
not more than €, at any point in the source space.

Our spatial domain analysis culminates in aformal expression for the error bound at every point
in the source space (Equation 14). Examining this expression, we observe a dependency between
error magnitude and the location of reconstruction and data values. Unlike existing methods we
can, therefore, adapt filter size to both reconstruction location and data complexity, using rigorous
estimates.
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In Section 2 we introduce the terminology and methods currently emphasized in reconstruction
methods. In Section 3 we describe our approach and in Section 4 we present our results.

2. Background

An image or avolumeis usually in the form of aregular rectilinear grid or a mesh of sampled
function values termed pixels (image) or voxels (volume). When 2D images are subjected to
affine transformations (e.g., trandation, scaling, rotation) or when they are subjected to non-affine
grid deformation (perspective, texture mapping, warping [1]), the function value in the form of
pixel intensity has to be computed on the target grid, commonly called the resampling grid. Simi-
larly, reconstruction is also needed when a 3D image (volume [9]) is subjected to affine transfor-
mations (e.g., trandation, scaling, or orthographic ray casting [23]), or non-affine transformations
(e.g., perspective ray casting [8], warping [4][6], and registration).

2.1 |deal Reconstruction

Much has been written about the reconstruction of sampled datasets in signal processing (1D
data) [15] or image processing applications (2D data) [7][22]. We briefly discuss some of the
important assumptions and results from this body of literature. Another body of work on the same
problem is available in the applied mathematics literature [19], where the process is usually
referred to as interpolation. Although the following discussion isin terms of 1D signals, it isalso
applicable to 2D and 3D signals.

We denote by f(x) a continuous function (the signal) which is sampled into the discrete function
fs(kh), where h is an equidistant gap between samples and k is an integer. In computer graphics
f(x) is not available; we only have fg, which is the discrete image we need to manipulate. Prior to
resampling one must reconstruct from fg, the continuous function, which we denote by fg(x). In
principle, the error we want to measure and control is |fg(X)-f(X)].

The fundamental assumption made in this paper is that the original continuous function, f(x), is
bandlimited. A function is bandlimited if there exists a frequency wy, called the cut-off frequency,
such that the strength of any frequency component greater than wy is zero. Inherent in this
assumption is that the function is analytic, i.e., the function and its derivatives exist at all points.
Thus, we are precluding step functions and other discontinuous functions. The bandlimited
assumption leads to the following restrictions on the Fourier spectrum F(w) of the function f:

[ F@P<o [ IF(w)l<w @

Do, Do,

where
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wC
Fw) = %1 [ Fw)e™do @)
Pw.

The first condition of Equation 1 indicates that f has finite energy, i.e., f belongs to the L2 space.
The second condition indicates the integrability of F(w) or that f belongs to the L space.
Although it is not essential, we also assume that our function is spatially limited.

These assumptions are not too restrictive, because the notion of bandlimitedness is very general
and can be applied to many forms of sampled data used in computer graphics and scientific visu-
alization. During the process of acquiring digital images, acquisition devices (e.g., cameras, scan-
ners) perform afiltering operation and bandlimit the function. Images generated by numerical
simulations of physical phenomenon (common in disciplines such as computational fluid dynam-
ics) are also bandlimited, since typically robust numerical solutions can only be obtained if the
algorithm incorporates a smoothing step. And rendering and scan-conversion algorithms, in order
to provide antialiased images, typically employ afiltering step which bandlimits the image. Even
if we cannot assume that the function is bandlimited, we can subject the image to yet another fil-
tering step (often called pre-filtering) to achieve bandlimitedness.

Another important assumption is that the continuous signal f is sampled at or above the Nyquist
frequency. The Nyquist frequency of asignal is defined as twice the maximum frequency of the
signal. Thus, in our context of bandlimited functions, the Nyquist frequency w,, is given by 2w,
and the sampling frequency wgis always greater than or equal to wy,. This assumption is essential
if we are to reconstruct the function exactly. The Whitaker-Shannon-Koletnikov (WK'S) theorem,
known commonly as Shannon’s Sampling theorem, states that any bandlimited continuous signal
f(x), if sampled at or above its Nyquist frequency (yielding the discrete function f), can be recon-
structed as shown in Equation 3 (yielding the continuous function fg) [15][19]. A final assumption
is that f4(x) is uniformly sampled from f(x).

Thus, we reconstruct with the formula

[¢)

fr(x) = 3 S(x k h)fgkh) -
k=D
where
1 x = kh
sn(x D kh)
S(X! k’ h) - h X # kh (4)
E(xa kh)

The function §(x,k,h) is called the Snc function. The sampling frequency w is determined by the
inter-sample distance h; it is equa to h. Reconstruction is essentially a convolution operation
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between the Sinc function and the sampled dataset. A weighted sum of all samplesis used to
determine the function value at some point x. Contributions from samples significantly small and/
or far away are minimal.

Another, albeit functional, perspective is that the reconstructed function is composed from an
orthogonal basis of Snc functions §x,k;h), -co < k < e [19]. Equation 3 readily provides this per-
spective, since the contribution at point x is the weighted sum of Snc functions indexed by k.
Also, at the sampled data locations the right-hand side of Equation 3 evaluates to the original
function value. Thus, the control points or coefficients of the basis representation are the sampled
data points themselves. This property of the Snc series expansion allows us to forgo both expen-
sive transformations (such as Wavelet and Fourier Transform), and the computation of control
points (such as Spline based methods). This perspective is later used to estimate the error of
reconstruction.

We can extend this discussion to multiple dimensions. We can use separ able filters, which sample
the data successively along each axis. Thus, in 2D the reconstruction equation becomes:

fRxy) = 3 3 S(xi,h)S(y.j, h)ffih,, jh,) ©)
i=DPoj =D

The quantities h, and hy, are the sampling periods along each of the principal axes. For 2D images,
the reconstruction requires the product of two Sinc functions, and similarly we can use three Snc
functionsin 3D. The processing order of the axesisimportant and can determine the final quality
of the image. Although separable filters are fast and easily implemented, separability introduces
anisotropic effects since the 2D or 3D separable filter is aligned with the principal axes [13].
Anisotropic effects are aways present unless aradialy symmetric filter is employed. In this paper
we limit ourselves to separable filters, although similar results can be obtained from radially sym-
metric filters.

2.2 Practical Reconstruction Methodsand Errors

The ideal reconstruction process from Equation 3 cannot be realized in practice, because the Snc
function isinfinite in extent. An obvious solution isto truncate the function to include only L inte-
ger valued points:

\Y|

fo(x, M) = Z S(x, k, h)f{kh) (6)

k=DM

where M = L div 2. Such afilter is called an FIR or finite impul se-response filter of order L. How-
ever, this causes aliasing in the frequency spectrum, thereby altering the filter’s frequency charac-
teristics. We achieve truncation by multiplying the infinite filter by a spatially limited rectangular
window. In the frequency domain thisis equivalent to convolving a Snc (the Fourier transform of
arectangular window) with a box (the Fourier Transform of a Snc). The resulting filter has fre-
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quencies beyond w, which have non-zero strength. Also, some frequencies below w; have an
attenuated amplitude |ess than the amplitude of the ideal filter. The resulting error has been called
post-aliasing by Mitchell and Netravalli [13]. Since we emphasize spatial methods in this paper,
we shall call this error truncation error (Equation 7), denoted by €. Note that this error also
includes the data the filter is applied against.

w

e(fgx M,h) = 3 S(x k h)ffkh) ™

|k >M

The truncation error manifestsitself as blurring (due to attenuation) and jaggies (due to including
frequencies beyond w) in an image.

To minimize the impact of truncation, a window function besides a rectangle can be used. Among
the most popular window functions are: triangular (Bartlett), Hanning, Hamming, and Kaiser
[15]. These window functions alter the characteristics of the truncated frequency spectrum. The
choice of one window function over another is atradeoff between blurring and aliasing. However,
since these filters differ from the Sinc function, a further source of error isintroduced. We call it
the non-Sinc error. It is not imperative that we only use a windowed Snc. We can use any of the
commonly used resampling filters [21].

If NSisthe filter obtained from windowing, then the reconstruction function is now given by:
VI
fra(x M) = 3 NS(x, k h)f(kh) ®
k=DM

The non-Sinc error, denoted by e, is the difference between the continuous function recon-
structed by the truncated Snc filter, and the one reconstructed by the NSfilter:

ens(fe X M, h) = | fo(x, M)DHR(X, M)| 9)
Thus, the total error is the sum of the non-Snc error and the truncation error:

e(f, x, M, h) = e(f, x, M, h) +e (f,x,M,h) (10)

2.3 Previous Work

The study of reconstruction errors has not received much attention in the graphics and image pro-
cessing literature. In [17], Parker et al. compare the effectiveness of some resampling filters.
However, they propose no metrics which can be used to judge the goodness of a resampling filter.
Mitchell and Netravalli [13] first introduced the reconstruction metrics pre-aliasing and post-
aliasing. Marschner and Lobb [12] further characterize post-aliasing artifacts; the proposed met-
rics, smoothing and post-aliasing, can help design a suitable filter. However, none of these mea-
sures are well suited for determining the accuracy of an interpolation or filtering scheme on a
sampled dataset.

— 5
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There exist many filter design methods which lie in either the frequency domain or the spatial
domain. For example, in the image processing and graphics literature Keys [10], Max [11], Park
and Schowengerdt [16] and Mitchell and Netravalli [13] use spatial methods to design resampling
filters which satisfy certain functional properties (the existence of derivatives, etc.). All of these
methods make assumptions about the interpolated function, and they deliver filters which perform
well on smooth functions. On the other hand, Carlbom [2] uses frequency methods to design fil-
ters which are solutions of a non-linear optimization process. This yields afilter of finite length
whose frequency response closely approximates the ideal filter response.

Among these efforts only [2] considers reconstruction error. However, this error is defined in the
frequency domain and only measures the deviation of the frequency spectrum from the ideal spec-
trum (a box in frequency domain). Also, this metric is global in nature and does not provide error
control on a point-wise basis. Moreover, this and other global frequency domain methods are not
conducive to our idea of adapting the filter size to the resampling location and to local data char-
acteristics.

Our method estimates the filter size for a given resampling location so we can interpolate to a
desired level of accuracy efficiently. For example, a less expensive interpolation scheme can be
used at some locations (e.g., near grid locations in source space). Similarly, a more expensive
scheme is warranted at other locations (e.g. far from grid locations). In addition, we aso deter-
mine the filter size from the complexity of the data at the resampling point. This gives us an effi-
cient yet accurate resampling method.

There is a body of work dedicated to filtering in texture spaces which attempts to address the
issues of error control and adaptivity. Fournier and Fiume [3] use spatial methods and a least
sguare error (L2 norm) estimate (with data included) to guide efficient and accurate anti-aliasing
of textures. They aso allow adaptive filtering in a manner to similar to MIP maps. However, their
method is complicated and does not use memory space efficiently. Norton et a. [14] use a fre-
guency domain approach to perform adaptive filtering with a smple box filter. They use a coarse
measure of goodness to clamp all frequencies beyond a certain range. However, the adaptivity is
not driven by any user defined error threshold, but is guided by an ad-hoc measure of the robust-
ness of the filtering operation in the frequency domain.

Adaptive filtering in the frequency domain is also reported by Totsuka and Levoy [20] for 3-D
volumes. Again, the adaptivity is not driven by an error threshold. Also, the technique requires
that the filtering be conducted in the frequency domain, which requires transforming a large 3D
dataset.

In summary, many of the past efforts neither provide any means of controlling the reconstruction
error nor provide adaptive reconstruction of the continuous signal. The methods which provide
error specification and control in the spatial domain are rather complex, while the methods that
provide adaptivity are either inconvenient or available in the frequency domain only. This moti-
vates our attempt to develop spatial domain methods which allow the specification of error
bounds and allow the use of different filter lengths adapted to the resampling operation and local
data complexity. Our method can be successfully employed in resampling operations and texture
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mapping. In the next section we provide the necessary theory and develop adaptive, spatial-
domain methods.

3. Reconstruction Error Estimates

In this section we provide estimates of truncation error and the non-Snc error. Researchersin
mathematics and electrical engineering have been long concerned with the accuracy of sampling
schemes. Some work has been done in both fields which can be applied to estimate the truncation
error. We present some of appropriate results from Complex Analysisfor the sake of complete-
ness. Later we obtain bounds for the truncation error. The estimates for non-Sinc error are much
more easier to obtain and we al so present our estimates in this section.

3.1 Truncation Error Estimates

Equation 3 isthe starting point for our effort. The true error can be computed for spatially limited
signals especially, images and volumes. However, in the presence of alarge number of sampled
data points, the computation can be prohibitively expensive. From Equation 3, we can compute
the function value at the resampling point R, as follows

n

® sinC(xD kh)
fR) = 3 —————fq(kh) (11)
ccpw (XD KN)

Let the resampling point R liein cell n, i.e., between sampled data points §, and S, ;. Also, let T
be the distance of R from S, in other words, x=nh+Tt. The truncation error is obtained from
Equation 11 by dropping L=2M+1 terms of the above infinite summation.

R ‘ Sh+1
‘ T
FIGURE 1. Interpolation Scheme for sampled dataset {S;, i=1,...,L}. The resampling point R

lies a distance 1 away from the sampled data Sj,. The point R is generated as a result of
transforming an image or a volume, supersampling pixel values or during texture mapping.

‘ Sn-1 Sn

-

Thus, the truncation error, e(f,x,h,M) is given in Equation 12.
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n

M sint(nh+ 1D kh)
alfax,h M) = f(0D Y — f(kh) (12)
ccom p(nh+TDkh)

A change of variable (let m= n - k) allows one to rewrite the above equation in a more convenient
form as shown in Equation 13.

* sinI[(mh+T)
g (fe,n,t,h,M) = f.((nB m)h) (13)

T[(mh+T)

Im>M R

Expanding the sinusoidal term inside the summation and letting sin m = 0 and cos Tm = (-1)™
for al values of m, we get Equation 14.

s

n- © m
h (Bb1)
Tt 2 (mh+1)

h Im>M

g(fs,n,T, h, M) =

f((n® m)h) ”

We now make two important observations from Equation 14.

Observation 1: The truncation error depends on the location of the resampling point R. If Ris
located at the center of agrid cell in the source space, i.e. 1=0.5, it attains its maximum value and
drops off to zero as one moves closer to the sampled data locations (t=0 or t=1). In [17] sSmilar
observations are made. However, these observations were made in the frequency domain. Also,
the error was not quantified. An important implication from this observation is that one can use
filters of different lengths depending on the location of the resampling point. In the next section
we shall provide evidence to illustrate this fact using 1D and 2D examples.

Observation 2: For large values of m, the terms in the infinite sum cancel each other if the func-
tion is smooth and does not change drastically in small or reasonably sized neighborhoods. The
implications of this observation is that we can effectively limit ourselves to reasonably sized
neighborhoods. This observation allows in even more efficient implementations of the filtering
operation since even smaller length filters can be used.

It is easy to determine a bound from Equation 14 and islisted in Equation 15.

N
nSnE © e mpn)

T [(mh +1)|
m> |M|

e(fyn, 1,h,M) <

(15)

Thisisstill not a practical bound to use, since all sampled data points have to be considered to
compute the error bound. Moreover, this bound overestimates the error since it does not take into
account the oscillating nature of the Snc function. We now consider some tractable error bounds
that can be used in practice. The error bound for this infinite sum can be found by resorting to

—8—
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complex analysis[24]. However, before we state the relevant results we discuss an important idea
of frequency guards.

Frequency guard bands allow the approximation of the infinite sum in Equation 15 by the integral
of an analytic function which exists on thereal line. A frequency guard of width r, O<r<1 implies
that there exists no frequency in the signal beyond rw,, where wy is the cut-off frequency. Thisis
astricter requirement than just bandlimitedness, but not too restrictive. The frequency guard band
can be found by determining the ratio of the maximum significant frequency of the spectrum and
the cutoff frequency. However for most graphics application it is sufficient to use very crude esti-
mates. We shall address this issue further in Section 4 when we discuss results and implementa-
tion results. Thus, if F(w) isthe Fourier spectrum of the continuous signal f, the restrictions on the
spectrum now are defined as follows

rw, rw,
[ IF@)® <o, | IF(w)l<e (16)

Drow, Drw,

The methodology used in [5][24] can be applied to determining the error of any polynomial
approximation scheme. In fact, such a methodology has been used to estimate the error of Leg-
endre and Hermite Polynomial interpolation. The mainstays of this approach are theory of ana-
lytic functions and the application of Cauchy’s Integral Formula and Residue Theorem [18].

3.1.1 Resultsfrom Complex Analysis

Inherent to this approach is the use of a contour C or a directional closed path in the complex
plane. Such a contour is shown in Figure 2. Thus, the contour (dark counterclockwise path) in our
example is arectangle of sized x L+1 centered at the resampling point R. The contour is larger
than the filter by a distance of unit h (or a distance of h/2 on both sides). This allows for all the
2M+1 sampled data points required for interpolation to be inside the contour. The intuition behind
using the contour is that it generalizes the process of filtering to the complex plane. The contour C
is the equivalent to the filter used to reconstruct real valued signals and could be of any shape.
However, it needs to be closed and directional [18]. The rectangle is normally chosen given its
smplicity.

We now state Theorem 1 which provides us with a way to compute the error bound for filtering
interpolation schemes. This contour integration used in Theorem 1 once again generalizes the
infinite sum of the contributions from sampled data points to the reconstructed value. In this sec-
tion discussion is to applicable to the space of continuous functions and we therefore use the sym-
bol everywhere. Many of the concepts expounded herein can be found in any standard text on
Complex Analysisincluding [18].

Theorem 1: Let C be the contour (shown in Figure 2) over the domain D (a subset of the complex
plane) and let function f be analytic everywhere therein (i.e., it is defined every where and all
derivatives exist). Let G(2) = sin(tz'h), where zis a point in the complex plane.
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Y >

FIGURE 2. Contour Integration applied to the computation of error bounds. The rectan-
gle with shaded edges is equivalent to the actual filter with half length M, while the rect-

angle with darker edges is the contour C.

Then, f1(2) = f(2)/G(2) is analytic everywhere except at z = kh, n-M-1 < k < n+M+1, (sampled
data points) where the function G(2) evaluates to zero. If the function is resampled at z=x on the
real line, then the truncation error thereis given by

G(x)§ f(2)
2m CG(z)(zD X)

e(f, x,k,h,M) = (17)

Theintegral in Equation 17 is performed over the contour C. By using other functions for G(z) we
can determine the error for various function approximations.

Proof: The starting point of this proof is the Cauchy Integral Formula [18] which allows us to
compute the function f;(x) follows

fx) _ 1 f(2)
= 2_T[I§ dz

sinTt- csin(nﬁ)(zD X) 4o

oIX

As mentioned earlier, the integral is performed on a contour C (Figure 2). To actually evaluate the
integral, the contour C, is altered since the function G(z) evaluates to zero at all sampled data
points, z= kh, n-M-1 < k< n+M+1. Thus at these points poles are introduced and the new con-
tour CO now skirts around these points (Figure 2). The integration over the contour CO is divided
asfollows:

» theintegrals evaluated on clockwise contours around sampled point §, n-M-1 < k< n+M+1,
each of which is denoted by Q(S)),

. i the integrals along both the straight lines leading to and from the poles; these cancel each
other,

» theintegrals aong the horizontal contours C; and C5 and

» theintegrals along the vertical contours C, and C,.

— 10—



Ohio Sate University Technical Report OSU-CISRC-1/95-TR03, January 1995.
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FIGURE 3. Contour Integration of Equation 20. The top portion of the contour in Figure 2 is modi-
fied to include the poles created by the sampling points. The new contour now includes, the seg-
mented portion on the top (C4), a complete horizontal path (Cg), full vertical paths (Co and Cy)
and 2M+1 clockwise paths leading to and from the sampled points.

The residues or the quantities Q(S,) at each one of the polesis evaluated in the limiting case and is
given by

k
_ f(kh) _ (B1)f(kh)
Q(S) = 7 i (19)
d_(smnF) (knDx)  n(khDX)
z z=kh
Thus the right-hand side in Equation 18 can be written as
W - L @iz 3 Qs
sinT[)—( 21 . z (20)
h (C1+C,+Cy+Cy| SIN| TI= | (2D X) kO Ind

Ind(M) = {KinBPMP 1<k<n+M+ 1

The second term in Equation 20 correspondsto the first M terms of the infinite reconstruction sum
(Equation 14) and hence it can be inferred that the first term in is the truncation error. Hence, it is
true that the truncation error is given by

G(x) f(2)

21 dz

c sin(nﬁ) (zb x) (21)

C =C,+C,+Cy+C,

e(f, x, k,h,M) =
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3.1.2 Determination of Truncation Error Estimatesfrom Complex Analysis

Having shown how the truncation error can be determined, we can now set about to obtain the
bounds for a bandlimited function. The error bound can be obtained in terms of either the maxi-
mum of the function value Max;, or the spectral energy of the function, E;. Since, all signals under

consideration have finite energy, are real and available as sampled datasets, E; can be simply

determined by Equation 22. This relationship is a direct consequence of the Cardinal Series
Expansion [19]. All the sampled data points are included in the summation of Equation 22.

hs[f4(K)|?
Kk

21T

E = (22)

We now state and provide a sketch of the proof of Theorem 2 which expresses the truncation

error bound in terms of the spectral energy of the function.

Theorem 2: The truncation error e(fg,x,k,h,M) in terms of the total energy of the signal is
bounded from above by the quantity

Sm_‘ 23
e(fyx. kh M1 N 23)

Tt (1D r)yN

Proof: To obtain a proof of this theorem we consider each part of the C' which has a non-zero
contour integral. Along the horizontal parts of the contour, C; and Cs, the contribution to the inte-
gral in Equation 21 is zero. We can show this by first considering the denominator sin(tz/h),
where z=X' +jy’ isany point in the complex plane. It is true that

‘s‘n"(X'T”W > coshTiy| = sinhTly| @9

The numerator in Equation 21 for al contoursis bounded by E; cosh (try’ |/h) [5]. Since the cosh
function grows faster than the sinh function [18] for the same argument, on contours C; and C3in
the limiting case the numerator becomes zero. Now let us consider contours C, and C,4. The con-
tour C, lies along line x=h(n- M -1/2) and thus

11
E;coshrly|
f(2) < h

sin(nﬁ)(zD X) \/(x'D h(nD M D 9)2+yzcosh%[|3/|

After further simplification the integrand along contour C, is now bounded by

(25)
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Efcoshgry
f(2) < (26)
sin(n}—f) (zD X) A/(Mh)2+y2COSh%[y'

It can be shown that the integrand along C, is also bounded by the same quantity. Recognizing

that cosh(2) grows faster than e* and then eval uating the integrals for both remaining contours we
get the required error bound

4E; @7

sm—‘
e(fa x, k,h,M) £ ——
Tt N(lD r)

Thus we are able to express the truncation error bound in terms of the energy of afunction and the
frequency guard r. If once again x=nh+t, i.e, it liesin the cell n of the source grid, we can replace
x with 1 (refer Equation 14). We now state another theorem, Theorem 3, which expresses the
error bound in terms of the maximum of a function. The proof for this theorem is very similar to
Theorem 2 and we are therefore not including it for sake of brevity.

Theorem 3: The truncation error g(f5x,k,h,M) in terms of the maximum value of afunction, Max;
is bounded from above by the quantity

Maxf‘sm—‘
e(fy x, k,h,M) £ ———— (28)

™ COS—
2

We now characterize the error that arises from the use of afunction different from a Snc function.

3.2 Non-Sinc Error

The use of the truncated sinc induces visual artifacts, namely smoothing (blurring) and aliasing
(jaggies). Therefore, another function suitably modulated by a window can be used. We however
need to estimate the error that arises from the use of windowed function. Once again we can either
use the spectral energy or the maximum value of the function. Using Parseval’s Theorem [15] and
Equation 22 one can write

M
e(f, x,n,h,M) < Ef(M)J%TjDM IS(t, 0, h) B NS(t, 0, hy|dt (29)

The integral computes the difference between the two functions in the L? norm space. The quan-
tity E{(M) is the energy of the signal in a 2M+ 1 sized neighborhood around the resampling point

R. Since the filters are space invariant one evaluate the filters when placed at x=0 for sake of con-
venience. One can similarly define a bound including the maximum value of the function
(Equation 30). The quantity Max¢(M) is the maximum of the function valuesin a2M+ 1 neighbor-

hood. Once again we are determining the difference in the areas of the two filter functions.

— 13—
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M
ey(fy x,n,h, M) < Max (M) [S(x, h) B NS(x, h)|dx (30)
bM

Any filter could be used instead of a windowed-Sinc filter. However, we shall limit ourselves to
windowed Sinc filtersin thisfilter. An example of awindow which we also employ in our paper is
the Hamming window (Equation 31). The significant aspect of this function is that it falls gradu-
ally to zero at the corners of the window and hence reduces the impact of aliasing caused through
the use of the rectangular window.

0.54 + 0.46005(ﬂ) X <M+1
WH(X) = M+ 1 (31)

0 otherwise
An appropriate filter can be obtained by multiplying this function with the Snc to obtain a modi-

fied Snc function. For multiple dimensions one can use a product of two 1-D window functionsto
get a 2-D function. Thus a 2D Hamming window would look like

WL (% y) = wy(X)wy(y) (32)

In this section we described the errors that arise from filtering operations. In the Section 4 we
these measures to predict reconstruction errors that arise from representative resampling opera-
tions and then show how they can be used to perform adaptive reconstruction.

4. Results

In this section we first test the validity of the bounds on 1-D signals. We a so illustrate the useful-
ness and viability of adaptive schemes. In the latter part of this section we implement our schemes
for aparticular 2D resampling schemes, namely rotation.

intensity
1

0.8}
0.6 |
04}
02}

0

0 100 200 300 400 500

pixel
FIGURE 4. Intensity values for scanline 300 of the 512x512 OLennaO image. The intensity val-
ues are normalized to the maximum possible pixel value, namely 255.

4.1 Accurate and Adaptive Reconstruction of 1D Signals

We consider a representative resampling scheme that frequently arises in computer graphics. In
this section we distinguish between resampling schemes and reconstruction or filtering opera-
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tions. Resampling schemes provide the points where the functions are reconstructed. The resam-
pling scheme of choice occurs when a 2D image or a 3D volume is subjected to affine
transformation (including scaling), or during texture mapping, or during ray-casting. The signal is
resampled onto another grid and the number of data points can change as aresult of scaling inher-
ent to the resampling operations.

intensity
04 T
0.35 | Maximum norm estimate |
’ Ena'gy norm estimate -
03} Actua Reconstruction Error — 1
(O N N A A
02}
015 [ v"’ \\\‘\ r”’ \\\\\ r"’ \\‘\ "”’ \\\. ,"” \\\
! | ! \ "r \ i v\‘ f .\,
01 i !"' .’. 1"' ‘V. !" .y.t A" .‘, "‘ .'l 1
/ ..n “‘ \ ’;' '.. 'ﬂ’ '\ ," '~. ’;"_
0 | \J '.! nlt '.‘ \J
0 100 200 300 400 500
pixels
FIGURE 5. Comparison of Error Estimates. The actual error and the estimates from Equation 23
(energy) and Equation 28 (maximum) are plotted. Both estimates bound the actual error well,
the energy estimate being closer.

In Figure 4 we consider a 1D signal obtained from row 300 of the Lenna image (Figure 9). It is
worth noting that the signal under consideration has very small energy content. One can estimate
the value of the frequency guard, r, by simply computing the first few Fourier coefficients above a
user defined threshold. It was observed that the value of the guard was usually lessthan 0.1 for all
images considered for this work. In other words, most of the energy of the function is character-
ized by the first one-tenth of the Fourier coefficients. The more accurately one measures the fre-
guency guards, the better are the estimates. However, even coarse estimates can suffice for many
signals and resampling situations in computer graphics.

The actual error from Equation 14, the error estimates from Equation 23 (using energy) and
Equation 28 (using maximum values) are determined, when the signal is resampled onto a new
grid (Figure 5). The function is reconstructed at x,=Xq+0.99*k, where X, is the location of thefirst
row pixel and k is an integer. The estimates from Equation 28 are looser and we found the energy
estimates closer to the actual error for many signals and resampling schemes.

Here we can actually see evidence for Observation 1 made in Section 3.1. The error behavesin a
sinusoidal manner for the representative resampling scheme. If alarger resampling frequency is
chosen, the periodicity of the error is higher. One can readily conclude that the filters of the same
length need not be used everywhere during the resampling operation. To use different filters at
different resampling positions, one can use the error estimates of Equation 23 and Equation 28.
For instance one can set the point wise error to € for all x along the length of the signal. The
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FIGURE 6. Comparison of Error Estimates. The actual error and the estimates from Equation 23
(energy) and Equation 28 (maximum) are plotted when a neighborhood of size 25 is used to
compute the maximum or the energy. The estimate based on energy follows the actual error very
closely.

required filter length at resampling point x can be determined from the computation listed in

Equation 33.
/rEf . TIX
2 Y sm—h‘

M(x) = ———— (33)
m(1Dbr)e

Figure 7 shows the minimum filter length at all points required for the resampling of the signal of
Figure 4 to obtain an user defined accuracy of €=0.02. The maximum filter length employed for
reconstruction is 27 (=13*2+1). We call this filtering scheme position-adaptive, since the size of
the filter isinfluenced only by the position of the resampling point. If frequency domain methods
of filter design are used it is generally the case that filters of even greater length are obtained from
the design process. Also, it is not certain that the desired level of accuracy is guaranteed from the
application of such afilter.

In Figure 5 we used the total energy or the global maximum value of the function to compute the
bounds. The estimated bounds are conservative. Taking into account the rapid decay of the Snc
function as one moves away from the resampling point, it might be useful to consider the energy
or maximum of afunction over a neighborhood of somewhat significant size as stated in Obser -
vation 2 of Section 3.1. The problem is now reduced to determining awindow of appropriate size
which is suitable for a given signal. This can be determined easily from the estimates of the
bounds itself. One can set the minimum error of resampling €, that can possibly arise during
resampling. Then one can simply calculate the neighborhood size M, by using either Equation 23

or Equation 28. We use energy estimates to determine the optimum neighborhood size.
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rEf T
29"

sin—
2
2
m(1Dr)e

_ h
Me = , (34)
min

The value of T is set 0.5 to cover all possible resampling positions. Now one can determine the
maximum or the energy over a neighborhood of this size. Equation 33 then becomes
rE:(Mp)
h
2
m(1Dr)e

TIT
sSn—
h

M(x) =

(35

A pre-processing step is now required which computes the energy or the maximum of the function
value over neighborhoods. In Figure 6 we plot the true error and the estimates using energy and
maximum values over a neighborhood of size Mc=25. The estimate based on energy is now very

close to the actual error. Figure 7 also shows the sizes of the filters used when a neighborhood of
size 25 is used for the signal of Figure 4. The maximum and average size of the filters are signifi-

M
16 — _ ]
Position-adaptive scheme -
141 Data-adaptive scheme — -
12y
of ; f ! ; A ,
8F ;J L
6f / /]
at)
2f
O * : . L L
0 100 200 300 400 200
pixels

FIGURE 7. Comparison of Filter Lengths. The filter half length, M, is plotted for the signal of
Figure 4. The solid curve provides the length of the filter at the resampling points when the
position independent scheme is used. The dashed curve provides the filter lengths for the
data adaptive scheme. The lengths were obtained using energy estimates.

cantly lowered. The use of smaller neighborhoods yields smaller filters and hence savingsin
reconstruction time We call filtering scheme data-adaptive.

The behavior of the bounds is different when the same signal is subjected to a plain translation.
This form of resampling occurs during shearing transformations, image registration, optimized
versions of volumetric ray-casting, etc. The error does not behave in the same periodic manner as
before since the displacement along the source space grid is constant. The truncation error is dic-
tated more by the data complexity rather than the position of the resampling point. We however
do not include any plotsto illustrate the behavior of error for the sake of brevity.
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FIGURE 8. Effectiveness of Reconstruction Schemes. (a) Error obtained from position-adap-
tive scheme. (b) Error from data-adaptive scheme. (c) Error from a cubic convolution filter.

In all our experiments we used the rectangle window function and hence did not incur the non-
Sinc error. If another window function was employed the total error would no longer be the same.
Although the total error no longer reaches zero, the periodic nature of the resampling error will
still remain unchanged. Even though a non-rectangular window is used, the adaptive scheme can

still be based on the truncation error.

Finally, to provide abasis of comparison we reconstructed the signal of Figure 4 with an

infinitely long Sinc filter (no truncation),

truncated Sinc filter whose length is not dependent on the data complexity (position-adaptive),

truncated Sinc filter whose length isinfluenced by the data complexity (data-adaptive)

— 18—



Ohio Sate University Technical Report OSU-CISRC-1/95-TR03, January 1995.

» cubic splinefilter described in [13].

We then determined the errors of reconstruction by computing the difference between the per-
fectly reconstructed function (using the infinitely long Snc filter) and the functions reconstructed
using the non-adaptive, adaptive and cubic spline filters. We aso set a threshold of 0.02 for both
filtering schemes as before. In Figure 8 we plot the reconstruction errors as measured against the
perfectly reconstructed signal. The position-adaptive scheme always delivered reconstruction to
the desired level of accuracy (=0.02). The data-adaptive scheme for most of the signal fared well.
However, in regions of rapid changesin function value it underestimated the error. The cubic con-
volution scheme on the other hand was not sensitive to either the position of the resampling loca-
tion or the data complexity. The error of reconstruction was also sometimes much larger than the
desired level of 0.02. If the desired level of accuracy is reduced to 0.002, both adaptive schemes
fare well, while the performance of the cubic convolution filter remains the same. Having shown
the effectiveness of our error measures we now provide 2D examples.

€Y (b)

FIGURE 9. (a) Lenna rotated by 10° and scaled down by half. Reconstruction was done with the
position-adaptive method with €=0.007. (b) A difference image between the position-adaptive and
the data-adaptive methods. Differences were exaggerated to make the pattern visible.

4.2 Accurate and Adaptive Reconstruction of 2D I mages

We considered a few two dimensional images to show the usefulness of the methods devel oped
here. Equation 23 and Equation 28 now simply become

T

T
L ML) T
sin—||sin—2

h h

m'N*(1Dr)(1Dr,)

16E,

e(f, x, k,h, M) <

(36)

— 19—



Ohio Sate University Technical Report OSU-CISRC-1/95-TR03, January 1995.

. X . Yy
NTE-SINTT
Max;s e SinT

20 g2 FTU__ I'TI
T M"™cos— cos—
2 2

e(f, x, k,h,M) < 37)

The quantities r, and r, are frequency guards for each of the dimensionsin the frequency domain

and can be crudely estimated from the FFT. The energy and maximum values are now determined
for al pointsin the image.

FIGURE 10. Filter size used for generating Figure 9 for position-adaptive filters (left) and for data-
adaptive method (right). Bright values stand for larger filters sizes.

The measures and filtering schemes can be adapted to images and volumes very easily. The posi-
tion-adaptive scheme does not require any pre-processing, while the data-adaptive scheme
requires that the energy or the maximum of the underlying function be determined over a neigh-
borhood. By specifying the minimum desired error one can use a derivative of Equation 37 (and
similar to Equation 34) to determine the size of neighborhood required to achieve the desired
error of €4, Thelocal energy and maximum values are then stored for each pixel (2D image) or
voxel (3D volume). At each resampling point, filter size isthen determined by using the error esti-
mates and applied in the 2D or 3D neighborhood. We also employ the 2D Hamming window to
obtain images of higher quality.

Figure 9(a) shows the image of Lenna rotated by 10° and scaled by half along both dimensions
while guarantying error threshold €=0.007. We employed a very simple resampling scheme unlike
the more complicated shearing schemes used in image manipulation packages. A bounding box is
first found and all pixels within the bounding box are scanned and mapped back to the source
space of the original image. Figure 9(b) provides a comparison between the error in the data-adap-
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tive and the position-adaptive schemes. One can see that in darker areas the differenceis larger
(and the difference image is brighter).

TABLE 1. Half-size of filtersused in the reconstruction of Figure 9.

Method Minimum Maximum Average
Position-Adaptive 1 11 6.75
Data-Adaptive 1 5 233
Cubic Convalution 25 25 25

Figure 10 shows the different filter sizes used for the rotation in the form of a gray scale image.
The difference in the filter lengths at various resampling points is determined and assigned suit-
able gray-scale values where white represent larger filter sizes. As evident from Figure 10(a), the
filter size changesin aperiodic sinusoidal fashion. Also, the filter size adapts to the data complex-
ity as shown in Figure 10(b). For instance, the dark areas around the hat are reconstructed with
smaller length filters. The position of the resampling point still modulates the filter size. Table |
provides a comparison of the filter sizes for the position-adaptive, data-adaptive, and the tradi-
tional cubic convolution filter [13].

We provide another example of an image obtained from afluid dynamics simulation. The image
in Figure 11(a) is rotated by an angle of 30° and scaled by afactor of 0.75 along both dimensions.
The result is shown in Figure 11(b) for athreshold of €=0.007. Filters of small length are
employed around the boundaries as shown in Figure 11(c). It is worthy to note that one can
achieve good boundary reconstruction with resorting to sophisticated resampling schemes. If a
larger threshold of €=0.02 is used, the adaptive scheme performs even better. The filter lengths
used are even smaller as shown in Figure 11(d). Table Il provides a comparison between the dif-
ferent filtering schemes for the fluid dynamics simulation image.*

TABLE 2. Half-size of filters used in the reconstruction of Figure 11.

Method Minimum Maximum Average
Position-Adaptive 1 12 7.15
Data-Adaptive 1 5 1.96
Cubic Convolution 25 25 25

Since average filter size for the data-adaptive method is lower than the one used by common high
quality reconstruction methods performance achieved is comparable. When the position-adaptive
method is used, average filter size increases, however, the desired error bound is always guaran-
teed.

5. Conclusions

We developed a new approach to the characterization and measurement of reconstruction error.
Our method, based on spatial domain error analysis, uses approximation theory to develop error
bounds for reconstruction. We provide an efficient way to guarantee an error bound at every point
by varying filter size. In addition, we support position-adaptive and data-adaptive reconstruction
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(@) (b)

(€) (d)

FIGURE 11. (a) An image from a fluid dynamics simulation. (b) The same image reconstructed by

the data-adaptive method where € =0.02, rotate by 30°, and scaled by a factor of 0.75. (c) Filter

size used for € =0.007. (d) Filter size used for € =0.02.
which adjust filter size to the location of reconstruction and the data complexity. Performing accu-
rate reconstruction can potentially shift the burden from resampling to reconstruction thus allow-
ing the use of simpler resampling techniques in many computer graphics applications such as
image processing, volume rendering, and texture mapping. Our methods provide the user with a
powerful tool for achieving any desired image quality while incurring space and computation cost
that is comparable to existing methods.
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