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ABSTRACT

Selection is a fundamental user operation in 3D environments.
These environments often simulate or augment the real world, and a
part of that simulation is the ability to select objects for observation
and manipulation. Many user interfaces for these applications de-
pend on six-degree-of-freedom tracking devices. Such devices have
limited accuracy and are susceptible to noise, giving an imprecision
that makes object selections difficult and hard to repeat. This diffi-
culty is amplified when the user’s viewpoint is also tracked, mean-
ing the user must compensate for noise from both the head tracker
and the pointing device when performing object selection. Also,
users may experience fatigue when using handheld pointing devices
for extended periods, creating error even if the tracking technology
were perfect.

This paper presents a pointing-based probabilistic selection al-
gorithm that addresses some of the ambiguities associated with
tracking and user imprecision. It performs multiple selections by
considering a frustum along the user’s pointing direction and the
hierarchical structure of the database. It assigns probabilities that
the user has selected particular objects using a set of low-level 3D
intersection-based selection techniques and the relationship of the
objects in a hierarchical database, and makes the final selection us-
ing one of several weighting schemes. We performed several exper-
iments to evaluate the low-level selection techniques, tested several
weighting schemes for the integration algorithm, and we show that
the algorithm is effective at disambiguating multiple selections.

CR Categories.  H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Interaction styles; H.5.3 [Information In-
terfaces and Presentation]: Group and Organizational Interfaces—
Computer-supported cooperative work;

Keywords. interaction, selection, algorithms, augmented reality,
virtual reality, hierarchical databases

1 INTRODUCTION

Many virtual and augmented reality systems present the user with a
rendering of a 3D world containing distinct objects that the user can
query or manipulate. To perform these actions on objects, the user
usually must first select the object. While there are many ways to
select objects, pointing at the desired object is a common and nat-
ural way to select. Selection by pointing can happen using a range
of devices, from a common 2D mouse controlling a cursor on a 2D
projection of the 3D world, to a full six-degree-of-freedom (DOF)
hand-held tracking device. Selection can also happen without using
the hands at all, by allowing the user to select using head orienta-
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tion (assuming the head is tracked) or gaze direction using an eye
tracker.

We assert that all user selection operations are susceptible to er-
ror. First, there is human error: the imprecision that comes from
lack of experience, not enough motor control to do fine grained se-
lection, or fatigue developed during a session; Wingrave et al. [13]
studied a number of correlations between certain attributes of users
and their ability to perform selections. Second, there is equipment
error, which could be noise, drift, and lag in a 6DOF tracking sys-
tem, or simply not enough resolution on a wheel-based device to
perform a fine selection. Finally, there are ambiguities associated
with the scene itself, such as when the user tries to select one object
occluded by another object. In our main application area, mobile
augmented reality, this is a common problem because users have
“x-ray vision” and can see spatial information, such as the position
of a collaborator, that may be occluded by real or virtual objects—
in this example, the collaborator may be behind a building. These
errors can lead to selections that are totally incorrect, such as when
using a ray-based selection that chooses a single object, or to am-
biguous results when using multiple selection techniques that can
choose many candidate objects.

We designed a pointing-based probabilistic selection algorithm
that alleviates some of the error in user selections. This technique
takes into consideration the hierarchical structure of the scene ob-
jects (e.g., a door is a child of a wall, which is a child of a building,
and so on). It assigns probabilities that the user has selected par-
ticular objects, within a frustum along the user’s pointing direction,
using a set of low-level 3D intersection-based selection techniques
and the relationship of the objects in a hierarchical database, and
makes the final selection using one of several weighting schemes.
We implemented this algorithm in our virtual and augmented reality
application framework and performed several experiments to evalu-
ate the low-level selection techniques, to evaluate several weighting
schemes for the integration algorithm, and to show that the algo-
rithm can effectively disambiguate multiple selections.

After describing related work, we describe the low-level selec-
tion techniques. We then present the design and discuss the results
of the experiments described above.

2 RELATED WORK

Selection in 3D environments has been an active research topic
since the first virtual environments were implemented. Hinck-
ley et al. [4] presented a survey of, and a common framework for,
techniques for 3D interaction, until that point in time. Liang and
Green [8] developed the spotlight method of selection, which al-
leviated some issues with using ray-based selection for small and
far objects, but introduced the problem of multiple selections, for
which they set up rules to choose one of the possible selections.
Mine [9] described a few techniques for selection, along with other
interactions to be supported in virtual environments. Forsberg et
al. [3] developed two novel selection techniques, aperture (an ex-
tension of spotlight) and orientation, to deal with the imprecision
of ray-based selection using a 6DOF input device. Pierce et al. [11]
introduced a set of selection techniques using tracked hands and the
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2D projection of a 3D scene. In his thesis, Bowman [1] gave a thor-
ough survey of 3D selection techniques at the time, and introduced
a novel technique for selection and manipulation.

In more recent work, researchers have dissected the task of se-
lection even further, and have created novel selection techniques
for specific application domains such as Augmented Reality (AR)
and multimodal systems. Wingrave et al. [12] discovered that users
do not have an internal model of how they expect the environment
to behave (for example, in performing selections), but instead they
adapt to the existing environment using feedback received when
performing tasks. Olwal et al. [10] developed some of the first al-
gorithms for selecting in AR. Their technique attaches a virtual vol-
umetric region of interest to parts of a user’s body. When the user
moves the body part, interacting with objects in the environment,
a rich set of statistical data is generated and is used for process-
ing selections. Kolsch et al. [7] developed a real-time hand gesture
recognition system that can act as the sole input device for a mo-
bile AR system. Kaiser et al. [6] developed mutual disambiguation
techniques and evaluated their effectiveness for 3D multimodal in-
teraction in AR and Virtual Reality (VR). They showed that mutual
disambiguation accounts for over 45% of their system’s success-
fully recognized multimodal commands.

We acknowledge that multimodal systems are an effective way
to alleviate some selection issues (for example, the user points
to a group of objects that includes a window, and says the word
“window,” giving the system the means to disambiguate the selec-
tion), and we have implemented multimodal (speech and pointing)
processing in our system for disambiguating different types of ob-
jects (for example, windows, walls, and buildings). However, if
there is more than one object of the same type (for example, four
windows) in the selection space, then the system described above
will fail since the utterance “window” is ambiguous and does not
help correct a wrong selection. In this example, either more so-
phisticated speech semantics or pointing-based selection processing
techniques are needed.

In this paper, we have chosen to focus solely on improving
pointing-based selection. Our selection algorithm introduces the
concept of executing multiple selection techniques in parallel and
choosing the final selection from the results of those techniques us-
ing a weighting scheme. The low-level techniques and the integra-
tion algorithm are described in the next section.

3 PROBABILISTIC POINTING-BASED SELECTION
ALGORITHM

Selection by pointing in 3D environments is inherently imprecise
when the user is allowed to select occluded objects—the user may
have the impression of pointing to a specific object, for example,
but the system may not know for sure which object in the pointing
direction is meant to be selected. Users often make pointing errors,
especially when selecting small objects, objects at a distance, or
when trying to make a selection quickly. Furthermore, pointing
provides the object’s direction, but not distance, so when several
objects lie in the direction the user is pointing, it remains unclear
which object the user intended to select.

To deal with selection ambiguity, we designed a probabilistic
selection algorithm that generates lists of candidate objects the user
may have meant to select, and probability estimates of how likely
it is the user meant to select each object. The algorithm combines
several intersection algorithms and the hierarchical structure of the
dataset, and then integrates the resulting candidate selections. The
processing steps of the algorithm are shown in Figure 1, which we
describe in each of the following sections.
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Figure 1: Flow of the pointing-based selection algorithm.

3.1 Frustum Intersection Algorithms

We have designed a set of three algorithms which attempt to mit-
igate the ambiguity associated with ray intersection. Each algo-
rithm is based on the concept of rendering the scene into a small
selection frustum (see Figure 2); the rendered scene is viewed by
a camera pointing coincident to the selection ray, and the frustum
is rendered into an off-screen image buffer. The algorithms then
count and classify the pixels in this buffer, and use these counts to
create a list (01,p1),..-,(0n, pn) Of potentially selected objects o;
and associated selection probabilities pj.

As described in more detail below, each of these algorithms has
differing utility depending on the user’s preferences for making se-
lections, on what type of object the user is trying to select, and on
its relationship to other objects in the scene. We have designed
the three intersection algorithms such that each has a different user
preference for selection. These preferences are: (1) select the item
nearest the central pointing ray; (2) select the largest item in the
viewing frustum; and (3) select using a combination of the two
other approaches. We wanted to find out if having several algo-
rithms available based on different user preferences increases the
chances for correctly selecting objects. These algorithms could ei-
ther be used individually or executed in parallel and their results
integrated together.

We describe each intersection algorithm in more detail, and then
show how their output lists of candidate selections are integrated
when the algorithms are run in parallel.

Pixel-Count The PiXEL-COUNT algorithm preferentially orders
objects according to their projected size in the selection frus-
tum. PIXEL-COUNT simply counts the number of pixels occupied
by each object, and weighs the objects accordingly. This pixel-
counting technique is a very fast way of implementing ordering of
objects by projected size. A similar technique has been reported by
Olwal [10].

PIXEL-COUNT

Input: 3D direction

Output: list (01, p1),. .., (0n, pn) Of candidate objects
0;j and associated probabilities pj

1 calculate a small frustum about 3D direction

2 for each object o; in the frustum

3 | render o; into the frustum
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1 Washington Building
2 Kennedy Street
3 Lincoln Building

Figure 2: The operation of the PIXEL-COUNT algorithm. The scene
is rendered into the small selection frustum shown in the center of
the image.

4 | pix; < number of pixels covered by o;

5 | weights w; — pix;/total-frustum-pixels

6 assign probabilities p; from weights w;

7 sort (0j, pj) list by decreasing probabilities p;

Figure 2 demonstrates PIXEL-COUNT. The green square in the
center of the image demonstrates one size of the selection frustum;
in the lower-right the frustum contents are enlarged. Note that the
frustum size may be adjusted by the user. The square in the lower
left corner shows a low-resolution re-rendering of the frustum con-
tents.

The PIXEL-COUNT algorithm is robust to noise and pointing
ambiguity. However, it inherently assumes the user is attempting to
select larger objects, and it does not work well for selecting small
objects near larger objects.

Barycentric-Pixel-Count This algorithm was motivated by our ob-
servation that users tend to point toward the center of the visible
part of the object they wish to select. Figure 3 describes how
BARYCENTRIC-PIXEL-COUNT operates. The algorithm calculates
the center point of the visible portion of each object (Of and O5),
and then determines the distance to the center of the selection frus-
tum (dy and dy). It then weighs each object’s pixels with the in-
verse of this distance; so in Figure 3 object 1’s pixels are weighted
by 1/d; and object 2’s pixels by 1/d,. Since it is assumed that the
user is intending to look at one object, probabilities are estimated
by normalizing the weights across all of the weighted pixels.

BARYCENTRIC-PIXEL-COUNT

Input: 3D direction

Output: list (01, p1),---, (On, pn) of candidate objects
0;j and associated probabilities pj

1 calculate a small frustum about 3D direction

2 let F° be the center of the frustum

3 for each object o; in the frustum

4 | let Of be the center of the visible portion of o;

5 | bary-weight — 1/||F° — Of||

6 | render oj into the frustum

7 | for each pixel a generated by o;

8 pix; < pix; +a* bary-weight

9 | weights w;j < pix;/total-frustum-pixels

object 1

selection frustum

Figure 3: The operation of the BARYCENTRIC-PIXEL-COUNT algo-
rithm. Because d; < dj, each pixel of object 1 will be weighted more
heavily than the pixels of object 2.

10 assign probabilities p; from weights w;
11 sort (0j, pi) list by decreasing probabilities pj

BARYCENTRIC-PIXEL-COUNT works very well for selecting
small objects near larger objects, but it does not work well if the
user points away from the center of an object, or if the object has a
shape such that the Barycentric center does not lie within the object
itself.

Gaussian-Pixel-Count The GAUSSIAN-PIXEL-COUNT algorithm
is also motivated by the general observation that users tend to cen-
ter the objects they want to select. However, this algorithm tries
to address the failing of the BARYCENTRIC-PIXEL-COUNT algo-
rithm, which occurs when the Barycentric center does not lie within
the object itself. GAUSSIAN-PIXEL-COUNT operates by applying
a Gaussian mask, centered in the selection frustum, to each ob-
ject’s pixels. The mask operates, in effect, by assigning weights to
each pixel based on its distance from the center ray according to a
Gaussian bell curve. Figure 4 describes how GAUSSIAN-PIXEL-
CoOuUNT operates. The filtered output for each individual object is
combined in an accumulation buffer. Probabilities are assigned,
again, assuming one object is intended to be selected, by normaliz-
ing across the weighted pixels.

GAUSSIAN-PIXEL-COUNT
Input: 3D direction
Output: list (01, p1),.--, (0n, pn) of candidate objects
0;j and associated probabilities p;
1 calculate a small frustum about 3D direction
2 calculate a Gaussian filter G centered in frustum
3 for each object oj in the frustum
4 | render o; into the frustum
5| for each pixel a generated by o;
6| | pix; < pix;+ax*G
7 | weight w; < pix;/total-weighted-frustum-pixels
8 assign probabilities p; from weights w;
| 9 sort (0j, pj) list by decreasing probabilities

The algorithm is less susceptible to being biased by large visible
objects and it favors selecting objects near the central viewing ray.
3.2 Probability Propagation in Hierachical Database

The probability estimates generated by the ray intersection al-
gorithms assume that a single object occupies a given space in
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selection frustum

Figure 4: The operation of the GAUSSIAN-PIXEL-COUNT algorithm.
Pixels in objects 1 and 2 are weighted by a circularly symmetric
Gaussian function centered at F°.
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Figure 5: A portion of a hierarchically-organized database that con-
tains urban data such as buildings, streets, signs, etc.

the viewing frustum. This assumption is not the case for a
hierarchically-organized database, which contains objects com-
posed of smaller objects, which in turn, may be composed of even
smaller objects, and so forth. This type of database can have sev-
eral objects occupying a given space, though there will always be
a relationship between the occupying objects. An example of a
hierarchically-organized database, which we use in our testing, and
the inter-relationships between objects, is illustrated in Figure 5.

In order to assign probabilities properly for a hierarchically-
organized database, we (1) set the ray-intersection algorithms to
probabilities for the lowest level structure for each pixel, and (2)
propagate the probabilities up the tree hierarchy from the leaf
nodes. Since our ray intersection algorithm returns the lowest-level
structures, we use the following algorithm to propagate probabili-
ties up the database hierarchy:

PROBABILITY-PROPAGATION

Input: old list Lo = (01, p1),---,(0n, pn) Of
objects oj and associated probabilities p;

Output: new list Ly = (01,p1),---,(Om, Pm)

1 create empty list Ly

2 for each object oj in Lo

3 f oj notin Ly then

4 add oj to Ly

5 | | oi-weight — p;

6 | for each recursive parent of o;

7 if oj.parent not in Ly then

8 add oj.parent to Ly

9 | | oi.parent.weight < oj.parent.weight 4 pj

10 for each object 0 in Ly

11 | normalize oj.weight

12 | assign probability p; from o;.weight
13 sort Ly by decreasing probabilities

One subtlety to note is in line 5, where we consider the prob-
ability for each pair as a “weight” for that pair, since we perform
operations with these values that do not strictly consider the val-
ues as probabilities. The resulting probability assignments estimate
likelihood that any of the occupying objects for a given space is the
desired selection. For example, using the hierarchy in Figure 5, for
a ray intersecting a window, its probability of selection is equal to
the probability of selecting the wall, building, city, and world, at
the intersecting pixel. Another property to understand using this
probability propagation approach is the probabilities for the parents
are always at least as much as the probabilities for any child. Keep
in mind, another reasonable and equally valid manner of assigning
probabilities is to consider the hierarchical nature of the database
at a lower level, when the ray intersection algorithms estimate the
probabilities. This approach may lead to different but still similar
assignments of probabilities.

3.3 Integration of Probability Assignments

The three lists of objects and associated probabilities generated
by the ray intersection algorithms and probability propagation al-
gorithm need to be combined into one list. One caveat to this
process is that each list may contain a slightly different set of object-
probability pairs due to differences in the how each algorithm op-
erates. Thus, the elements of the lists will have to be matched and
like items combined. Another important note is that, in the process
described below, just as in the probability propagation algorithm,
we consider the probability for each pair as a “weight” for that pair,
since we perform operations with these values that do not strictly
consider the values as probabilities. A naive integration approach
would be, for each object, to simply average the weights assigned to
that object from the different algorithms. This approach, however,
does not take into consideration the strengths and weaknesses of
each of the three algorithms. A more appropriate way to integrate
them is to assign a weight to each algorithm, W;, based on how
well each performs in comparison to the others. The lists are then
integrated by the following WEIGHTED-INTEGRATION algorithm.

WEIGHTED-INTEGRATION
Input: 3 lists Lg, Lg, Lp = (01, p1),---,(On, pn) Of
objects 0j and associated probabilities p;

Output: new list Ly = (01,p1);---, (Om, Pm)
1 create empty list Ly
2 for eachlistLjinLg,Lg,Lp
3 | for each object oj in L
4 if oj notin Ly then
5 | add pair to Ly
6 else
7 I_find 0j in Ly
8 | | Ln.0j.weight «— pjxW;
9 for each object 0 in Ly

10 | normalize o;.weight

11 | assign probability p; from oj.weight
| 12 sort Ly by decreasing probabilities

The integration weights, W, i = G, B, P, corresponding to the in-
tersection algorithms GAUSSIAN-PIXEL-COUNT, BARYCENTRIC-
PIXEL-COUNT, and PIXEL-COUNT, respectively, are initially ar-
bitrarily assigned to % each (giving the same effect as the naive
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method of averaging). However, we acknowledge that having
proper weight assignments for data integration is important for op-
timizing performance and is a difficult task. We made several at-
tempts to refine the weight assignments. We used the performance
estimates of the intersection algorithms to influence the assignment
of the weights in the integration. In one case, we normalized the al-
gorithm performance estimates and used those as the weight values.
For the other case, we used the normalized performance estimates
as a guide to refine the weight assignments. More details about the
assignment of weights is given in Section 4.

4 PERFORMANCE EVALUATION

We conducted several experiments to gain a better understanding
of the effectiveness of the algorithms for disambiguating multiple
pointing selections. We approached this task by first comparing
empirically the three intersection algorithms head-to-head to learn
the strengths and weaknesses of each algorithm for specific dataset
cases. Second, we evaluated the integration algorithm, exploring
several weighting schemes, to determine how best to utilize com-
binations of the intersection algorithms in parallel. Lastly, we con-
ducted a short experiment to demonstrate and empirically evaluate
how well the algorithms work for disambiguating selections.

4.1 Comparison of I nter section Algorithms

We conducted three experiments to compare the three intersection
algorithms head-to-head. The first experiment was designed to
test the experimental protocol, flushing out any design and test-
ing issues, and used a simple real-world urban dataset and a few
test cases. Each successive experiment increased the detail of the
datasets and complexity of the test cases. Comparing any algo-
rithm thoroughly typically requires running an extensive set of ex-
periments with multiple datasets and conditions. The goal of these
experiments was to get a general feel for the accuracy of each algo-
rithm for performing selection using a real-world urban dataset.

Since our overall goal is to apply these algorithms for disam-
biguating multiple selections, we acknowledge that precision plays
a role in how we evaluate the algorithms. In particular, the selec-
tion cases we address only become interesting when high preci-
sion is required, otherwise the selections could be easily performed
using well-known ray-based pointing techniques. We ran a set of
preliminary tests to evaluate the degree of precision needed for the
experiments and tested the selection techniques on a range of sizes
for objects and varying amounts of space between each. Some of
the test cases are shown in Figure 6. We used the precision es-
timates to guide our choice of the test cases for the experiments,
making sure that the required degree of precision was high, but low
enough to collect meaningful data to compare the three algorithms.
Later, when we tested the algorithms for disambiguating selections
of smaller, distant objects, we increased the degree of precision re-
quired. We next describe the experiment preparations, experimental
protocol, and each experiment.

Experiment Preparation We prepared for the experiments by im-
plementing the algorithms and user interface in a combined AR
and VR system our laboratory has been developing over the last
several years. The two major building blocks of the combined
system are the Battlefield Augmented Reality System (BARS) [5],
which provides support for 3D in the form of VR and AR (with
special emphasis on mobile AR and multi-wall VR), and Quick-
set [2], which provides support for 2D map-based interaction using
an agent-based architecture that supports probabilistic, asynchro-
nous input events. The system has evolved extensively over the last
several years to support a large number of input and display de-
vices, interaction and display algorithms, as well as the interface
techniques and associated algorithms described in this paper. The
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Figure 6: Three of the test cases used to determine the degree of
precision needed by the experiments. We varied the size of several
windows, and the spacing between each, and asked several users to
perform selections of the windows for each test case. Statistics were
collected to determine the precision required for our experiments.

major components we added are the pointing-based user interface,
the associated selection algorithms, a speech recognition system,
and the Quickset multimodal speech-and-gesture integrator.

Experimental Protocol For each of the three experiments, we re-
cruited two to four subjects from our development team. Each sub-
ject wore a tracked, see-through head-mounted display (HMD) that
included a microphone for the speech recognizer. The orientation
of the head was used as the pointing direction. The system showed
a cross-hair cursor at the center of the view frustum for the pointing
direction. The view frustum’s borders were made invisible to the
user and its size was kept fixed throughout the experiments. The
experiments operated under the assumption that the user’s selection
strategy was to point directly through the center of the object in-
tended to be selected. Other strategies, such as selecting the largest
item in the view frustum, are evaluated later in Section 4.3.

Each subject was given a training session to become familiar
with the pointing and speech input interaction mechanism. The
subjects were prompted by the experiment administrator to perform
selections using head direction combined with a voice command.
For example, the subject is asked to point at the upper right window
of the left building, shown in Figure 6, while speaking “secure this
window.” The system responds by changing the color, based on the
voice command, of what the system determines to be the correct se-
lection. In Figure 6, the verb “clear” triggers a change in the color
of the upper right window to green.

The trials of each experiment asked the subjects to perform a se-
quence of selections over a range of test cases. The selection test
cases presented were sets of windows, doors, walls, and buildings.
The speech actions included “danger on this object,” “clear this ob-
ject,” and “reset this object” — these commands are meaningful in
the urban situational awareness domain of the BARS system [5].
Data were collected for the three frustum-based algorithms. Cases
where the speech recognizer failed were thrown out, since we are
not evaluating the speech recognizer nor the multimodal features
of the system. The test cases were presented in a counter-balanced
manner in order to eliminate any learning-effect biases.

Experiment 1 The first experiment used a small subset of the
dataset shown in Figure 7. The dataset contains semantic in-
formation about the buildings surrounding our laboratory—it is a
real-world database used by our system for various development,
demonstration, and evaluation purposes. We ran the experiment,
following the experimental protocol above, using two subjects.
Each subject was asked to perform selections of windows and doors
in three different buildings. We collected statistics for 12 different
cases per user, for a total of 24 cases. We recorded the accuracy of
the intersection algorithms; we recorded a boolean value of ‘1" if an
algorithm made a correct selection, and a ‘0’ if it made an incorrect
selection. Figure 8 shows the accuracy performance of each of the
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Figure 7: The dataset used in Experiments 1-3. Progressively smaller subsets of the dataset, with different test cases, were used in Experiments 1
and 2. (Left) Ground-level views; these are the views that subjects saw during the experiments. (Right) Elevated view; given to give the reader
a feel for the dataset's layout.
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Figure 8: The accuracy (mean percentage of correct selections) given
by the three intersection algorithms in Experiments 1-3.

three algorithms for Experiment 1.

Experiment 2 The second experiment expanded on the first experi-
ment, this time using a larger dataset and a broader set of test cases.
As hefore, the dataset chosen is a subset of Figure 7°s dataset. We
only presented the ground-level view of the dataset to the subjects.
The test cases were determined based on observed strengths and
weaknesses of the three intersection algorithms. We designed the
test protocol such that the subjects would make selections for situ-
ations where each of the algorithms is weak, and cases where each
is strong; we tested an equal number of “good” and “bad” test cases
for each algorithm. We used four subjects and collected the per-
formance statistics for 192 selection cases (48 per subject). The
users were asked to make selections of windows and buildings. We
recorded the accuracy performance for each of the three algorithms;
the results for Experiment 2 are shown in Figure 8.

Experiment 3 The third experiment used the largest portion of our
test dataset (Figure 7), as well as the broadest set of test cases,
which we believe better explored the strengths and weaknesses of
the intersection algorithms. This experiment followed the same pro-
tocol as Experiment 2, with three subjects and 144 selection cases
(48 per subject), and an equal amount of good and bad test cases
for each algorithm. We again recorded the accuracy performance
for each of the three algorithms; the results are shown in Figure 8.

Resultsand Discussion We analyzed the accuracy performance re-
sults with a one-way analysis of variance (ANOVA). In addition to
the standard p-values, the standard measure of effect significance,
we calculated and report w2, a standard measure of effect size. @? is
an approximate measure of the percentage of the observed variance
that can be explained by the effect.

As suggested by Figure 8, we found a strong effect of algo-
rithm for each of the experiments (Experiment 1: F(2,69) = 5.07,
p = .009, ®? = 10.3%; Experiment 2: F(2,573) = 20.7, p < .000,
®° = 6.4%; Experiment 3: F(2,429) = 12.7, p < .000, 0® =
5.2%). The error bars in Figure 8, which show +1 standard error,
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Figure 9: The effect of BARYCENTRIC-PIXEL-COUNT on selection
involving a concave shape. The blue regions work properly, while the
red fail. Empirical results show regions B and C fail 85% of the time.

indicate that BARYCENTRIC-PIXEL-COUNT had greater accuracy
than both GAUSSIAN-PIXEL-COUNT and PIXEL-COUNT for all
three experiments. For Experiments 2 and 3, GAUSSIAN-PIXEL-
COUNT had greater accuracy than PIXEL-COUNT.

This analysis empirically validates that the choice of intersection
algorithm makes a difference in selection accuracy. Approaches
similar to what we are calling Barycentric have been presented as
Liang and Green’s spotlight method [8] and the aperture method of
Forsberg et al. [3], but here we present the first empirical evidence
for the general effectiveness of this technique.

However, although the data show that the BARYCENTRIC-
PIxXEL-COUNT algorithm clearly outperforms the other algorithms
(for this choice of dataset and degree of pointing precision), we can
observe some interesting test cases if we allow the user to view the
same dataset from above the buildings. For example, we observed
that concave shape patterns show up more often looking from above
than from the ground-level views—see Figure 9. One weakness of
the BARYCENTRIC-PIXEL-COUNT algorithm is how it operates on
concave objects. The algorithm relies on an estimation of the center
of the objects trying to be selected. As seen in Figure 9, one esti-
mation of the center of Building 1 is located at the position where
the ‘o’ is shown. Due to the complex nature of the behavior of the
algorithm’s weighting function, we decided to empirically evaluate
the test case. We ran a quick study collecting statistics for how well
different regions of the buildings could be selected properly using
the BARYCENTRIC-PIXEL-COUNT algorithm. Pointing in the re-
gions shown in blue properly select the correct building, while the
red regions fail. Empirical results show regions ‘B’ and ‘C’ fail
85% of the time.

4.2 Evaluation of Integration

We conducted three experiments to evaluate different weighting
schemes for the integration algorithm. Our objective was to deter-
mine how to best utilize different combinations of the intersection
algorithms, including determining when to use an intersection al-
gorithm by itself or when to combine the algorithms in parallel. We
focused mainly on finding an optimal weight assignment for the
typical use case and compared it against the best intersection al-
gorithm (BARYCENTRIC-PIXEL-COUNT). In each experiment, we
used the datasets and experimental protocol from the experiments in
Section 4.1. We applied several different weighting schemes (de-
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Figure 10: The accuracy of the integration schemes versus

the BARYCENTRIC-PIXEL-COUNT intersection algorithm in Experi-
ments 1-3.

scribed below) to the integration algorithm, and for each scheme,
ran an experiment and assessed the performance of the integration.
We show the weight assignments for each experiment in Table 1
and the performance results of the integrations in Figure 10.

Table 1: Weight assignments for experiments.

2-Parm-Search (Scheme A) | .1894 | .4688 | .3418

2-Parm-Search (Scheme B) | .1138 | .5400 | .3462
Adhoc (Scheme C) .1000 | .5000 | .4000

Majority Voting (Scheme D) n/a n/a n/a

[ Exp | Scheme [ Wp [ Wg [ Wg |
1 Equal Weighting .3333 | .3333 | .3333
1 Performance-Proportional .3103 | .4138 | .2759
1 Performance-Differential .3031 | 4238 | .2731
2 Equal Weighting .3333 | .3333 | .3333
3 Equal Weighting .3333 | .3333 | .3333
3 Performance-Proportional .28 .38 .34
3
3
3
3

Weighting Schemes The weighting schemes listed in Table 1 and
Figure 10 are:

e Equal Weighting: Simply assign the weights Wp =W =
Wg = 3.

e Performance-Proportional Weighting: Assign the weights
W; = norm(A;), for i = P,B,G, where A; are the accuracy
estimates for i-th intersection algorithm.

e Performance-Differential Weighting:  Assign the weights

W; = sum(peorrect — pPt-MaNest) in for i =P B,G, for j =

1..n, where Peorrect gng pnext-highest are the probabilities of
the correct and next highest selection, n is the number of trials
used to estimate the performance of algorithm i. Negative
differences can be assigned zero.

e Two-Parameter-Search Weighting: Start with an estimate
for one of the weights (assume weight Wy). Next, use per-
formance estimates of the algorithms to compute the ratio
r= ﬁi:ﬁg , Where Ay, A, and A3 are the respective algorithm

accuracies. Compute the weights by solving the two equa-
tions: Wy +W, +W; = 1 and Wy — W, = r(W; —W3).

e Adhoc Weighting: We assigned the weights by hand, based
on observed trends in the performance of the other weighting
schemes.

e Majority Voting:  Select the candidate object that has the
majority of the votes across the intersection algorithms. Em-
pirical data, when using the equal weighting scheme, shows:
(a) if all three vote for one object, the integration always votes
for that object; and (b) if two of the three vote for the same
object, the integration algorithm selects the same object a ma-
jority of the time.

Results and Discussion We again analyzed the accuracy perfor-
mance with a one-way ANOVA. We found a strong effect of al-
gorithm/integration scheme for Experiment 1 (F(3,116) = 4.37,
p = .006, w? = 7.8%) and Experiment 2 (F(1,382) = 10.8, p =
.001, @2 = 2.5%). In addition, we found an effect for Experiment 3
(F(6,809) = 2.17, p = .044, w? = .85%), and while this effect is
significant, it is a substantially weaker effect than the others re-
ported in this paper. The error bars indicate that in Experiment 1,
performance breaks down into two groups: (1) the Barycentric in-
tersection algorithm and the Performance-Proportional integration
scheme, and (2) the Equal Weighted and Performance-Differential
schemes, with group (1) performing better than group (2). In Ex-
periment 2, the Barycentric algorithm performed better than the
Equal Weighted scheme. We only tested one integration scheme
in this experiment because we decided it would be more interesting
to look at test cases where the best intersection algorithm (Barycen-
tric) had a lower global effectiveness, which motivated the next ex-
periment. In Experiment 3, the Equal Weighted and Performance-
Proportional schemes appear worse than the others, but otherwise
the performance of all the schemes (and the Barycentric algorithm)
is comparable. This relative equality is why the effect significance
and size is substantially smaller for Experiment 3.

4.3 Evaluation of Disambiguation

The overall goal of our research was to develop methods for dis-
ambiguating multiple selections. We made strides towards this goal
by developing several intersection algorithms and an integration al-
gorithm that can combine the algorithms in many ways. The com-
bination can be automatic, by using one of the schemes described
previously, or it can be manual, by allowing the user to explicitly
set the weights in the integration algorithm—for example, to only
use the BARYCENTRIC-PIXEL-COUNT algorithm, the weights are
set to Wg = 1 and Wp = Wg = 0. However, we have not yet shown
that the integration algorithm is effective at disambiguating multi-
ple selections, and we will address that now.

We conducted Experiment 4 to demonstrate, and evaluate em-
pirically, the effectiveness of the integration algorithm in a simple
disambiguation scenario. The experiment was performed using two
subjects. We developed a dataset that requires a higher degree of
precision for selecting by pointing than was necessary in the previ-
ous experiments. The dataset consists of a wall with nine windows;
we placed a large window in the center and arranged eight smaller
rim windows surrounding the center window. We asked subjects to
select each of the nine windows separately, and the order of selec-
tion was random.

We collected statistics for 18 selections of the middle window
and 31 selections of the outer windows. We analyzed the data con-
sidering how different selection strategies could be used for the
scenario. Specifically, we considered how the windows could be
selected using four strategies. The first strategy is to simply point
at the window—*select object by pointing at it.” The second strat-
egy is to select the largest window, no matter where the user is
pointing—*“select largest object.” The third and fourth strategies
are combinations of the previous two, called “select largest object
while pointing at it” and “select largest object while not pointing at
it.” We analyzed the data considering these four selection strategies
and show the results in Figure 11.
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Figure 11: Comparison between the PIXEL-COUNT and

BARYCENTRIC-PIXEL-COUNT algorithms over a range of user
selection strategies. The dataset contains small, distant objects that
are very difficult to select by pointing. The noise in pointing is high
enough that BARYCENTRIC-PIXEL-COUNT fails often.

The PIXEL-COUNT algorithm worked perfectly for selecting the
largest object across all the selection cases. The most interesting
result is the overlapping case, “select largest object while point-
ing at it,” where the results show the success of the PIXEL-COUNT
algorithm in comparison to the weaker performing BARYCENTRIC-
PIXEL-COUNT algorithm. This result seems to indicate that as the
precision required increases, the BARYCENTRIC-PIXEL-COUNT
algorithm will not be as reliable as the PIXEL-COUNT for select-
ing the largest item.

The difference in the performances between the “select largest
object while pointing at it” and the “select object by pointing at
it” strategies indicate that the surrounding objects may be selected
correctly more often than the middle object. This phenomenon may
occur because the rim objects have free space on some of their sides.
If this is the case, the middle object has a slight disadvantage using
the “select object by pointing at it” strategy.

5 CONCLUSIONS AND FUTURE WORK

We presented three 3D pointing-based object selection techniques,
PIXEL-COUNT, GAUSSIAN-PIXEL-COUNT, and BARYCENTRIC-
PixEL-COUNT, and applied them to the case of selection using a
hierarchically-organized object database. We empirically demon-
strated the general effectiveness of the BARYCENTRIC-PIXEL-
COUNT technique. However, there are cases where that technique
fails, so we developed an integration algorithm to try to leverage
the strengths of each technique by combining their results using
one of many weighting schemes. We evaluated these schemes and
presented a careful analysis of the results. The bottom line is that
different selection schemes work best in different scenarios, and
the selection integration algorithm can disambiguate multiple se-
lections.

There are several ways to improve this work. First, we need to
take advantage of the semantic information in our database, for ex-
ample, if it seems the user is selecting a window, it could be that the
user is actually trying to select an object behind that window. Sec-
ond, we can involve the user in the selection process beyond simple
pointing. Perhaps the user could manipulate a dial or similar con-
troller to scroll though the multiple selections until the correct ob-
ject is selected. Third, we could determine the best sets of weights
for certain common types of databases, or even for different areas
within a single database, and establish “weight profiles” to be em-
ployed for those databases or areas of databases. A modification

of that idea is to classify weight assignments by the situations in
which they work best, and then use that information for develop-
ing better performing automated selection techniques that adjust to
the situation on-the-fly by swapping weight assignments. Another
possibility is to have the algorithms learn from user indications as
to whether the correct item was chosen or not. An implementa-
tion issue to address is how to properly handle ties in probabilities.
For future studies, we would also like to add more subjects in the
experiments.
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