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One of the most challenging tasks in multidimensional multivariate data analysis is to identify and quantify
the associations between a set of interrelated variables. In real-world climate studies, this task is even more
daunting due to the uncertainty and complexity of dynamic, environmental data sets. Notwithstanding the
difficulty, the variability and destructiveness of recent hurricane seasons has invigorated efforts by weather
scientists to identify environmental variables that have the greatest impact on the intensity and frequency of
seasonal hurricane activity. In general, the goal of such efforts is to improve the accuracy of seasonal forecasts
which should, in turn, improve preparedness and reduce the impact of these devastating natural disasters.

One particularly useful method for predicting seasonal hurricane variability is based on the idea that there
are predictors of the main dynamic parameters that affect storm activity which can be observed up to a year in
advance. Using historical data, their importance is estimated using statistical regression techniques similar to
those described by Vitart [1]. Klotzbach et al. [2] used these technique to determine the most important variables
for predicting the frequency of North Atlantic tropical cyclone activity. Similarly, Fitzpatrick [3] applied stepwise
regression analysis to the prediction of tropical cyclone intensity. Although sometimes complicated to establish,
these techniques provide an ordered list of the most important predictors for the dynamic parameters. Scientists
gain additional insight in these studies by evaluating descriptive statistics and performing correlation analysis.

Over the years, the volume and sophistication of climate analysis have progressed rapidly; but methods
to display and scrutinize the information in useful and meaningful ways have not kept pace. For example,
researchers have relied on simple scatter plots and histograms to analyze multiple variables. Using separate plots,
however, is not an optimal approach in this type of analysis due to perceptual issues such as change blindness (a
phenomenon described by Ware [4]), especially when searching for combinations of conditions. Although layered
plots condense the information into a single display, there are significant issues due to occlusion and interference
as demonstrated by Healey et al. [5]. Furthermore, the geographically-encoded data used in climate studies
are usually displayed in the context of a geographical map; although certain important patterns (those directly
related to geographic position) may be recognized in this context, additional information may be discovered more
rapidly using non-geographical information visualization techniques. What’s more, few multivariate visualization
techniques have been integrated with the statistical analysis techniques (e.g. multiple regression and correlation)
that are commonly utilized in climate studies. To compensate for these deficiencies and enable more effective
climate analysis, new solutions based on geovisual analytics are needed that intelligently integrate statistical
processes and accommodate the simultaneous display of multidimensional multivariate, environmental data.

The geovisual analytics system developed in this research was built around an enhanced display panel that
is primarily based on a popular multidimensional multivariate information visualization technique called the
parallel coordinate plot (PCP). The PCP was first introduced by Inselberg [6] to represent hyper-dimensional
geometries and later applied to the analysis of multivariate data relationships by Wegman [7]. Since then, several
innovative PCP extensions have been introduced.

This geovisual analytics system provides a unique PCP-based interface by fusing together variations of several
PCP interaction techniques. Fundamental PCP extensions described in prior publications [8,9] such as frequency
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Figure 1: An annotated view of the PCP axis display widget for the system highlighting the visual interaction components
and statistical indicators. The axis shown on the left illustrates the normal axis shading while the axis on the right
illustrates a highlighted, dependent axis shading.

information display, dynamic axis re-ordering, axis inversion, and details-on-demand are provided in this system.
The system also provides several more innovative PCP capabilities derived from recent research publications. The
double-ended sliders on each PCP axis (see Fig. 1) facilitate the investigation of subsets of data [9]. The system
also provides an axis scaling capability, inspired by earlier approaches [10–13], that captures the mouse wheel
movement to allow the user to interactively tunnel through the data until a smaller subset of the original data is
in focus. This focus+context technique pushes outliers into context regions of the axis display thereby reducing
clutter in the central focus area. Also the system uses aerial perspective shading [14] to encode the proximity
of polylines to the mouse cursor which allows the viewer to quickly investigate multidimensional associations in
the data set.

These visualization features are coupled with statistical indicators and automated statistical analysis capa-
bilities resulting in a unique system tailored for advanced climate study. To support the interactive analysis
capabilities of the system, each axis graphically represents key descriptive statistics (see Fig. 1). In addition
to representing frequency information, the axes represent central tendency and variability statistics in the form
of box plots for the data in the central focus area of each axis. To facilitate correlation analysis, correlation
indicators that represent the correlation between axis pairs are represented beneath each axis in a color-coded
set of blocks. The correlation representation was derived from an exploded correlation matrix plot. Furthermore,
small scatterplots are displayed for each axis when an axis is highlighted yielding a more detailed view of the
variable associations such as nonlinear relationships.

In addition to simple linear regression (SLR), the system offers stepwise multiple linear regression (MLR)
capabilities with a backwards glance which selects the optimum number of the most important variables using
a predefined significance level. These regression capabilities complement the visual analysis capabilities of the
system by isolating the significant variables in a quantitative fashion. Although a full description of the regression
interactions and indicators is beyond the scope of this abstract, Fig. 1 and Fig. 2 show the system representation
of regression results in the color-filled boxes beneath the axis name which are filled bottom to top according to
the magnitude of the resulting MLR coefficient and SLR r2 value.

The application of PCP-based geovisual analytics to the study of climate predictors is an important contribu-
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Figure 2: The geovisual analytics system developed in this research is composed of a settings panel (upper left), parallel
coordinates plot panel (upper right), and table view panel (lower). The statistical indicators, correlation/regression
indicators, dynamic query, and discrete aerial perspective line shading features on hurricane trend data.

tion from this research. During the system development and testing, a systematic workflow for using the system
in climate analysis was developed to guide the scientist through the knowledge discovery process. Moreover,
the effectiveness of the system was evaluated in a hurricane climate study where the primary objective was to
find the most important predictors for seasonal intense hurricane (IH ) activity in the North Atlantic to improve
forecasting skill. The secondary objective of the case study is to discover additional temporal associations among
the predictors in the data.

In the climate study, a data set containing sixteen potential environmental predictors observed annually for
fifty-seven years was analyzed. The data set was provided by Dr. Phil Klotzbach of Colorado State University,
where it was used operationally to predict hurricane activity for storm seasons by categories. The focus of this
study was on the IH activity in a hurricane season. Initially, the data set was scrutinized for general and temporal
associations using the interaction capabilities and descriptive statistical indicators. Later, several interesting
patterns were discovered using the correlation and regression analysis features. Although a full discussion of the
findings from this study are beyond the scope of this paper, the identification of the most important predictors
reveals the potential of this system for enhanced climate analysis.

In Fig. 2, a plot from the multiple and single regression analysis is shown. Here the predictors selected by the
MLR model are arranged according to the magnitude of the regression coefficient using the dependent variable,
IH. Using the interquartile range, the predictors have been further characterized by examining their behavior
in years with above normal and below normal activity. In Fig. 2, years with above normal IH activity are
highlighted. From this analysis, the predictor ranges for above normal years were recorded. Then, confirmatory
analysis revealed that using these predictor ranges to predict the IH activity in a season would have resulted
in successfully identifying 11 of the 14 seasons (74%) that had a high number of intense hurricanes between
1950 and 2006. Minor adjustments were applied to the predictor ranges to capture all 14 seasons with above
normal IH activity. These numerical predictor ranges can be used to predict the IH activity of future topical
cyclone seasons. In addition to this exploratory analysis, the physical relationships of the selected predictors were
ascertained to demonstrate the validity of their selection from a weather science perspective. The full description
of this case study represents one of the most comprehensive validations of geovisual analytics in the weather
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science domain.

The geovisual analytics system developed in this research provides a comprehensive environment for multivari-
ate analysis by combining an enhanced PCP with automated statistical analysis. Using this system, a systematic
workflow was formulated to explore climate data. The system has also been evaluated via a real-world case study
where the primary objective was to identify and quantify the most important seasonal predictors for IH activity.
Using traditional climate analysis techniques alone in this case study would require the examination of about
136 scatterplots to observe the associations that are efficiently captured by one frame of the system presented in
this paper. The results of this practical evaluation suggest that geovisual analytics can be used in conjunction
with statistical processes to more efficiently conduct real-world, multivariate data analysis on complex environ-
mental data sets, particularly those related to climate analysis. Furthermore, this research effort addresses the
NIH/NSF Visualization Challenges Report recommendation that visualization researchers “collaborate closely
with domain experts who have driving tasks in data-rich fields to produce tools and techniques that solve clear
real-world needs [15]” through the inclusion of a hurricane expert throughout the design and evaluation of the
system.
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