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ABSTRACT

Weather Research and Forecasting (WRF) models simulate weather
conditions by generating 2D numerical weather prediction ensem-
ble members either through perturbing initial conditions or by
changing different parameterization schemes, e.g., cumulus and mi-
crophysics schemes. These simulations are often used by weather
analysts to analyze the nature of uncertainty attributed by these sim-
ulations to forecast weather conditions and to track storms. The
number of simulations used for forecasting is growing with the ad-
vent of increase in computing power. Hence, there is a need for pro-
viding better visual insights of uncertainty with growing number of
ensemble members. We propose a geo visual analytical framework
that uses visual analytics approach to resolve visual scalability of
ensemble members. Our approach naturally fits with the workflow
of an analyst analyzing ensemble spatial uncertainty. Meteorolo-
gists evaluated our framework qualitatively and found it to be ef-
fective in acquiring insights of spatial uncertainty associated with
multiple ensemble runs that are simulated using multiple parame-
terization schemes.
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1 PROBLEM STATEMENT

Weather forecasters simulate weather conditions using numerical
weather prediction models. These models are run multiple times
in order to reduce error and uncertainty attributed by one single
run. Each simulation run is termed an ensemble member that is
generated either by perturbing initial conditions or by changing pa-
rameterization schemes. Some of the tasks that are performed with
ensemble members and parameterization schemes are to find an en-
semble run that represents consensus of all ensemble runs and also
to find outliers from the ensemble. Therefore, in this paper ”uncer-
tainty” refers to the degree to which 2D scalar ensemble members
agree or disagree with each other. A meteorologist is interested in
understanding uncertainty attributed by parameterization schemes
whereas an operational weather forecaster is interested in forecast-
ing weather using these simulations. The climatologists also use
these simulations to predict climate.

Ensemble-Vis[7] and Noodles[8] were built to provide insights
on 2D numerical weather simulation models. They are efficient
in presenting insights of overall uncertainty but are inefficient in
handling various distributions of uncertainty as their spatial visu-
alization techniques are not effective in identifying and tracking
outliers. These frameworks initially depend on providing insights

⇤e-mail: sra116@msstate.edu
†e-mail: szhang@msstate.edu
‡e-mail: mercer@gri.msstate.edu
§e-mail: jdyer@msstate.edu
¶e-mail: swan@cse.msstate.edu

based on spatial characteristics of uncertainty and use those insights
to understand multiple parameterization schemes. So, if the spa-
tial visualization techniques used in these frameworks do not yield
better representations of underlying distributions of uncertainty, it
would affect a meteorologist0s understanding of parameterization
schemes.

The use of visual metaphors such as graduated glyphs, ribbons
are good at presenting the overall uncertainty or spread of ensem-
ble members on single large display, but are not helpful in analyz-
ing uncertainty attributed by a single ensemble member or group
of similar ensemble members. These visualization techniques do
not scale well with growing number of ensemble members as it
becomes cumbersome to identify individual outliers and to track
uncertainty across multiple spatial locations. The identification of
individual ensemble runs or cluster of similar ensemble runs is im-
portant for a meteorologist as it helps them to narrow down the
parameters that were used for generating these ensemble members.
It also helps operational weather forecaster in terms of identifying
an ensemble run that reflects the consensus of all the ensemble runs
and predict weather based on a particular ensemble representative
instead of using descriptive statistics like mean, median and stan-
dard deviation of all the ensemble runs. Hence, there is a need
for presenting spatial uncertainty attributed by individual ensemble
members effectively with precision and control.

2 METHODOLOGY

In order to overcome the disadvantages with frameworks discussed
in the earlier section, we propose a geo visual analytical framework
that presents initial insights on parameterization schemes and use’s
knowledge from these initial insights to dynamically build explore
spatial characteristics of uncertainty. This approach naturally fits
with the workflow of simulations, as the uncertainty in these simu-
lations is driven by parameterization schemes.

We primarily divide our framework into two spaces, overview
space and spatial exploratory space. These spaces guides the ana-
lyst to build their knowledge based on type of uncertainty charac-
teristics acquired at each stage of the framework as shown in Figure
1. We will further describe our work with the help of an ensemble
dataset used in evaluating our work. This ensemble dataset is simu-
lated for 73 forecast hours using intial atmospheric conditions from
1999 storm event that occured on East coast. This dataset is sim-
ulated using 5 microphysics, 2 cumulus and 3 planetary boundary
layer (PBL) schemes.

The purpose of this overview space is to present insights on
the relationship between parameterization schemes based on un-
certainty characteristics attributed by them. The euclidean distance
metric is used to calculate the pairwise distance between ensem-
ble members followed by clustering these ensemble members into
selected number of cluster groups based on their calculated pair-
wise distances. The clustering results of n ensemble members are
plotted using a dendrogram that identifies each ensemble member
with parameterization schemes that were used in simulating them.
As shown in Fig 1, this dendrogram presents insights on ensemble
clustering groups in relation to parameterization schemes.

The spatial exploratory space guides analysts to perform a spa-
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Figure 1: This figure represents 30 ensemble members of 850mb Temerature simulated for 73 hours as described previously. (a) This figure

shows an interactive dendrogram where node attributes like node’s shape and color are mapped to Cumulus while their corresponding edge

colors are mapped to Planetary boundary layer(PBL) parameterization schemes. It provides insight on uncertainty with reference to parame-

terization schemes. The pattern in this dendrogram draws towards an insight that uncertainty is primarily driven by cumulus followed by PBL.

Color Brewer scheme “Set1” is used for encoding categorical qualitative data like parameters belonging to parameterization schemes. (b) This

shows the spatial uncertainty between ensemble members 8, 14 and 22 based on the insights gained in the overview space. The pairwise

comparisons of ensemble members (8, 22) and (14, 22), exhibit greater uncertainty compared to the pairwise comparison of ensemble members

(8, 14). It presents spatial characteristics of uncertainty using knowledge gained from the insight in the analysis phase (a). The color Brewer

scheme “Reds” is used to encode sequential quantitative scalar spatial data. The color scale for ensemble members and pairwise comparisons

is different even though we used the same color scheme to encode spatial data.

tial analysis of uncertainty attributed either by selected individual
ensemble member or by a selected group of ensemble members
based on the insight acquired from overview space. The purpose
of this space is to provide insights on spatial characteristics like
location and magnitude of the uncertainty. The spatial exploratory
space consists of small multiples that represent individual ensemble
members and their pairwise comparisons arranged in different lay-
outs. These small multiples help the analyst build dynamic spatial
patterns using knowledge gained from overview space. The ma-
trix layout of small multiples helps analysts to acquire the spatial
consensus of ensemble members, while the tabular layout of small
multiples helps to make 1:n number of pairwise comparisons. This
spatial exploratory space is tightly integrated with multiple levels of
interactive features that help analysts explore spatial characteristics
of ensemble members.

3 EVALUATION AND CONCLUSION

The novelty of this framework comes from using pairwise com-
parison approach to visualize ensemble spatial uncertainty and in-
tegrating this approach with unsupervised cluster analysis to find
similar ensemble members, thereby reducing the total number of
ensemble members required to visualize, thus resolving the visual
scalability of spatial ensemble uncertainty. The entire framework
is evaluated qualitatively by meteorologists in exploring parameter
space and analyzing spatial uncertainty. Even though both evalu-
ated the tool independently, they inferred the same insights from
the dataset saying that “uncertainty is primarily driven by cumulus
parameterization schemes followed by PBL scheme”.
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