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Figure 1: (left column) The AR Out-of-Focus problem: A user of an optical see-through AR display is looking at a building (e.g., 10
meter focal distance). (left, top) When focused on the AR display (e.g., 1.5 meter focal distance), AR fonts are in focus, but the
background is blurred. (left, bottom) When focused on the background, the background is in focus, but the AR fonts are blurred.
(right column) The SharpView font solution: when seen out of focus, a SharpView font looks better (sharper) than a regular font.
(right, top row) Focus is on the font (the AR display, at 20 cm); note that the standard font is in good focus. (right, middle row) Focus
on the background, with simulated blur at 4m. (right, bottom row) Focus on the background, with optical blur, images taken with
an optical camera at 4m. For the last two rows, note that the SharpView font looks better (sharper) than the regular font. b is a
quantitative measure of blur, described in the paper (see Section 6.1). Note that b is higher for standard fonts than for SharpView
fonts. The values of b are scaled by a factor of 1000. Note that the camera-captured images do not reflect the actual perceptual
experience of observing the fonts through the optics with a human eyeÐthe fonts appear brighter than suggested here.

ABSTRACT

In an optical see-through augmented reality system, virtual and real
information can be viewed at different distances. This requires users
to frequently change their eye focus from one distance to another,
and only one piece of information is in sharp focus while the other
is out of focus. Previous studies have found that due to out-of-
focus virtual information, when integrating information between
the distances, users suffer fatigue and miss important information.
Therefore, this paper introduces a novel font, termed a SharpView
font, which looks sharper and more legible than standard fonts when
seen out of focus. Our method models out-of-focus blur with Zernike
polynomials and coefficients, develops a focus correction algorithm
based on constrained total variation optimization, and proposes a
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novel gradient-based algorithm to quantify the sharpness of textual
information. We have evaluated the SharpView font through sim-
ulation and optically viewed camera-based measurement. When
seen out of focus, our proposed font are significantly sharper than
standard fonts, as assessed both visually and quantitatively through
simulation (40%±44%), as well as the optics of an augmented reality
display (24%±32%).

Index Terms: Augmented RealityÐFocal Distance SwitchingÐ
Out-of-focus ProblemÐShort AR Text; Depth Based Visual
AberrationÐZernike Polynomials & coefficientsÐ; Out-of-focus
correctionÐSharpView FontÐTotal Variation Image Deconvolution

1 INTRODUCTION

Augmented Reality (AR) is a modern technology that superimposes
computer-generated graphical content on a user’s view of the real
world to enhance their vision, perception, and understanding of their
environment. One way to deploy AR is through partially reflective
semitransparent optical combiners, known as an optical see-through
(OST) head-mounted display (HMD) [51, 52]. In this system, real
and virtual information is located at varying distances from the
user; which could potentially cause context switching (switching
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visual and cognitive attention between information sources) and fo-
cal distance switching (changing the shape of the eye lens between
different focal distances to see information in sharp focus at a new
distance) [6, 7, 25]. During focal distance switching, users can only
observe one piece of information in focus, and the other becomes
blurred (for around 350ms [16]), generating the out-of-focus prob-
lem. For example, a soldier using an OST AR display on a battlefield
may be looking at a real object far away (e.g., a tank) while also
viewing virtual textual information (e.g., technical information about
the tank) that is at a closer focal distance. This requires the soldier
to constantly change the focus of his eye between the two distances,
creating context switching and focal distance switching. Addition-
ally, the soldier can only focus on one set of information, causing
the other to become blurred, resulting in the out-of-focus problem.
This can lead to eye fatigue and the potential to miss important
information that could cause unexpected errors [7, 25, 31, 35, 42].
In addition to this scenario, these issues arise in many other OST
AR applications, such as surgery, head-up displays in automotive,
maintenance, assembly tasks, and others. Therefore, these issues
can be considered a fundamental aspect of OST AR, which needs
to be better understood. To address this lack of understanding, this
paper presents a novel algorithm that renders virtual information in
a way that allows it to look sharper and more legible when it is seen
out of focus.

The initial motivation for conducting this research came from the
previous work of Arefin et al. [7] and Gabbard et al. [25], where
they performed a partial replication and extension of a text-based
visual search task to investigate the impact of context switching, fo-
cal distance switching, and transient focal blur in OST AR systems.
Both previous investigations have observed that due to transient
out-of-focus blur during focal distance switching, participants’ per-
formance declined, leading to missing information in a text-based
visual search task. Interestingly, Arefin et al. [7] found that this
effect is not specific to AR, but is a general property of visual tasks
that require integrating information from multiple displays located
at different distances. Because transient out-of-focus blur is endemic
to OST AR, this suggests the importance of generating a sharper rep-
resentation of out of focus virtual information. To accomplish this,
we specifically considered short AR text labels. Short AR textual
information, for example names on buildings, has been widely used
in many AR applications, including AR navigation, notifications,
maintenance, education, and others. Furthermore, a recent survey
by Gattullo et al. [26] on AR visual assets in maintenance found
that, among 348 visual AR assets, short text labels have been the
second most widely used. This highlights the importance of textual
information in AR research.1

The main purpose of our research is to create and assess a percep-
tual image processing-based focus correction algorithm to generate
new AR fonts with improved out-of-focus text legibility. We termed
this novel font as Shaprview font, an AR font that is designed to look
sharper and more legible when seen out of focus than a standard font
(Fig. 1). As a first step, we modeled the blurred retinal out-of-focus
in the OST AR system using the Zernike polynomial, which are
commonly used to model visual deficiencies of human vision. We
adopted the constrained total variation (TV) image deconvolution
approach for systematically generating the precorrected images. Al-
though vision scientists have used similar techniques for people with
refractive vision problems (e.g., problems corrected by glasses or
contacts, such as myopia, hyperopia, and astigmatism) [33, 50, 53],
these methods have never been previously used to address the out-
of-focus problem in OST AR. Additionally, researchers developed
a SharpView algorithm for general images (e.g., the Lenna image,
rock images, etc.) [39]. However, this algorithm did not consider
the depth of the focused and out-of-focus virtual objects while mod-

1Portions of this work are reported in a Doctoral Consortium abstract [4]

and a PhD dissertation [5] by the first author.

eling the out-of-focus blur. Furthermore, their algorithm did not
show promising results for textual information [21]. In addition, we
developed a novel algorithm to measure and quantify font sharpness
(Fig. 1). Finally, we evaluated our algorithm with synthetic simula-
tion, and with camera-captured images through the optics of the AR
display. The evaluations covered three types of textual information:
a letter, a word, and a phrase. For each type of textual information,
our proposed SharpView font has better visual acuity and appears
sharper in out-of-focus situations (Fig. 1), both system visually and
quantitatively. Overall, the main contributions of this research are:

• We present novel mathematical formulations for modeling out-
of-focus blur with Zernike polynomials, parameterized by the
depth and size of the focused and out-of-focus virtual objects
for the OST AR system.

• We develop a constrained total variation (TV) optimization-
based focus correction imaging algorithm to rectify the out-of-
focus issue in the OST AR system. This algorithm generates
the novel SharpView font for the OST AR system.

• We propose novel mathematical formulations based on image
gradients to measure and quantify the blur amount in the font.

• We evaluated our proposed technique with both a synthetic
simulation and a physical camera-based setup with an optical
see-through AR display that showed improved sharpness and
legibility.

2 RELATED WORK

2.1 Hardware Based Focus Correction

In the last decade, researchers have proposed a variety of hardware-
based solutions to reduce the focal switching distance between vir-
tual and real content and improve visual clarity on near-eye displays.
Additionally, a large number of custom hardware-based solutions
have been developed to address refractive vision issues in vision
research.

Refractive Human Vision Error Correction: Pamplona et al. [53] pro-
posed the use of the light field principle to create a customized
display for individuals with refractive vision problems. However,
the display prototype only covered a small area of the eye’s field-of-
view (FOV) and had low resolution. Huang et al. [33] then developed
a multilayer prefiltering approach to correct refractive aberration
for displays such as phones, tablets, laptop screens, workstation
monitors, etc. They further improved the technology by creating a
computational light field display with a 4D prefiltering algorithm to
correct refractive vision problems [34]. This allowed them to gen-
erate images with high contrast and resolution for refractive vision
correction. Barsky et al. [12] then proposed a multilayer display
with an inverse prefiltering method, which successfully reduced
the effects of contrast loss and ringing artifacts compared to the
single-layer display. All of these methods are applied to creating
screen-based displays that observers with visual impairments can
see without wearing corrective optics.

Near-eye AR Display Hardware: In the AR research field, a great deal
of effort has been put into creating new hardware-based near-eye dis-
play technologies to address the issue of accommodation-vergence
mismatch. Surveys [36, 40] have discussed various hardware-based
approaches, such as multifocal displays [32, 45, 46, 58], varifocal
displays [17, 24, 66], light field displays [48, 49], and retinal dis-
plays [38, 54, 65], among others. However, these hardware-based
focus correction techniques face many difficulties, such as small eye
box size, low resolution, low contrast, small field of view (FOV),
the need for eye tracker integration, and rendering performance.
Notably, most of the hardware-based focus correction approaches
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in the AR-VR research domain, to date, only exist as optical work-
bench prototypes, and it is uncertain how long it will take for these
solutions to become wearable displays.

2.2 Algorithm Based Focus Correction

Algorithm-based focus correction methods use the computational im-
age processing approach to generate the required image for a specific
error. When the optical blur is assumed to be space-invariant, then
this procedure is known as deconvolution, and the rendered image
is termed a precorrected image. Unlike the standard deconvolution
problem of removing blur and noise from the image, the algorithm-
based focus correction approach renders the precorrected image in
such a way that it looks sharper under the incorrect focus. Some-
times, precorrected images contain negative or very high-intensity
values that are not suitable for human visual perception and decrease
visual acuity [22, 50]. Based on this, Montalto et al. [50] mentioned
three challenges for the image processing-based deconvolution ap-
proach for focus correction: stability, bounded pixel values, and
ringing sensitivity; the last two do not appear in standard image
deconvolution applications.

Refractive Human Vision Error Correction: Alonso and Barreto [1] and
Alonso et al. [3] were the first to introduce the use of image-based
refractive vision correction for computer screens, which imple-
mented Wiener filtering as the focus correction algorithm. Yellott
and Yellott [68] then improved the method for reading blurred text
with presbyopia, but their technique had low contrast. Montalto
et al. [50] developed a novel approach to generate imagery with
improved sharpness for visually impaired individuals using the con-
strained total variation (TV) based image deconvolution method.
This algorithm generated an increased sharpness and higher contrast
of the precorrected images for refractive vision problems. Further-
more, they provided a thorough comparison between the Wiener
filtering and TV-based image deconvolution approaches with the text
images synthetically and camera-based testing, and noticed that a
constrained TV-based system improved the visual acuity more than
Wiener filtering with a Gaussian PSF-based approach. Therefore, the
TV-based deconvolution algorithm is established to provide better vi-
sual acuity in focus correction through image processing for people
with vision impairments. Furthermore, Xu et al. [67] proposed the
first fully software-based visual aberration correction for visually im-
paired people for VR systems, considering Zernike polynomial and
TV-based deconvolution techniques. Guzel et al. [30] also consid-
ered the Zernike-based PSF modeling and the convolutional neural
network-based prescription correction method for visually impaired
people in VR.

Out-of-focus Correction in AR: Algorithm-based out-of-focus correc-
tion in AR is a relatively less explored topic. To our knowledge, only
two papers have addressed the problem of out-of-focus in AR to
date [21,39]. Oshima et al. [39] developed the SharpView algorithm
for natural general images [39]. However, they did not appropriately
take into account human visual aberration, and considered a standard
Gaussian PSF and Wiener filtering deconvolution approach. Later,
Trey et al. [21] conducted a psychophysical experiment to examine
whether this approach improved text legibility. However, they did
not find any promising results for short AR text labels.

2.3 Total Variation (TV) Deconvolution

The total variation (TV) deconvolution technique is a gradient-based
image processing approach in which the whole problem is con-
sidered as a convex image optimization problem [13, 20]. One of
the main advantages of using the convex optimization function is
the guarantee of obtaining the global optimum in the solution [19].
Rudin et al. [59] first introduced a total variation-based approach to
remove noise from the image by minimizing the total variation norm.
Since then, there have been many TV-based algorithms for different

problems and applications [13, 14, 19, 50, 57, 67]. Bioucas-Dias et
al. [15] proposed a TV-based image deconvolution algorithm for
additive white Gaussian image noise. Their approach showed that
the best solution could only be obtained by ensuring a decrease
in function values with a few iterations instead of minimizing the
objective function to its optimal value. Later, in 2007, Bioucas-Dias
et al. [14] introduced a two-step iteration of the TV thresholding
algorithm with a much faster convergence rate than the traditional
TV algorithm for image restoration. Another TV-based algorithm is
the primal-dual approach, where an optimization step is performed
in the primal domain and another step in the dual domain [18,19,57].
Beck and Teboulle [13] derived fast gradient-based algorithms for
constrained total variation image denoising and deblurring prob-
lems. Their method considered the dual-based method to obtain
a faster global convergence rate in the solution. The research of
Beck and Teboulle [13] established a novel monotone version of
the non-negativity and bounded value constraints of a fast itera-
tive shrinkage/thresholding algorithm (FISTA) for TV-based image
deblurring.

3 MODELING VISUAL ABERRATION

To create a sharper and more legible visual representation of virtual
information during the out-of-focus period, we first need to model
the image formed on the retina at the moment of out-of-focus aber-
ration. To model out-of-focus aberration in the human eye, it is
essential to understand the mechanism of retinal image formation.

3.1 Basic Principle of Retinal Image Formation

Retinal Image: The image of an object on the retina is referred to as a
retinal image IR. It is formed by the light from the object entering
the eye through the pupil and being focused on the retina of the
eye by the lens of the eye, whose accommodative power is adjusted
by the ciliary muscle [29]. The amount of light entering the eye
is controlled by the pupil radius, which can range from 2±4mm in
bright light conditions and 4±8mm in low light conditions [9, 29].
By controlling the amount of light entering the eye, the pupil size
also affects the amount of observed blur for objects that lie at a depth
different from the one focused by the eye lens. The resulting image
is also affected by the refractive indices of different parts of the eye,
such as the cornea and lens. Given an observed image I, we can
describe the corresponding retinal image IR as

IR = I ∗ k, (1)

where ∗ describes a convolution and k is the point spread function
(PSF) of the eye that describes the diffraction of light in the pupil,
refractive errors, and other optical properties of the human eye.

Point Spread Function of the Eye: The PSF of the human eye can
be calculated from the generalized pupil function with complex
values [23, 28, 41]

P(x,y) = A(x,y) · e−i 2π
λ

W (x,y), (2)

where λ is the wavelength of light in a vacuum and (x,y) are the
coordinates of the image surface of the pupil plane. A(x,y) is a
real-valued circular amplitude function that determines the relative
efficiency of light transmission through the pupil. It takes the value
1 within the pupil region and 0 outside. The wavefront aberration
function (W (x,y)) is the difference between the ideal spherical wave-
front and the aberrated wavefront for every point (x,y) on the surface
of the pupil plane [8, 9, 60]. The PSF is then defined as

k(x,y) =
F (P)(x,y)◦F (P)(x,y)

∥F (P)(x,y)◦F (P)(x,y)∥l1

. (3)
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Figure 2: Retinal image formation during the out-of-focus problem in AR. (a) Out-of-focus spherical aberration S is positive. Here, the eye focuses
on a real font at 4.0 m and the retina observes a corresponding sharp image. In front of the eye’s focused font, an AR font is placed at 0.20m.
Therefore, a correspondence retinal image is placed behind the retina, and the user observes a blurred AR font. (b) S is negative. Here, the eye
focuses on a real font at 0.20m, and a retina observes a corresponding sharp image. Behind the eye’s focused font, an AR font is placed at 4.0m.
Therefore, the user observes a correspondence retinal image placed in front of the retina and blurred. The vertical dashed lines indicate the
approximate location of the lens of the eye and the retina.

Here, F is the Fourier transform operator, ◦ denotes the Hadarmard
product (element-wise multiplication), and the bar is the complex
conjugate operation.

The impact of focusing distance on the PSF of the eye has been
modeled as a Gaussian PSF [21, 39]. However, this is an overly sim-
plified consideration that does not account for the diffraction of light
and does not correctly represent the effects of pupil size and focus
distance on the retinal image [41]. A Zernike polynomial-based PSF
more accurately represents low-order (e.g., defocus, astigmatism)
and high-order (e.g., trefoil, coma, quatrefoil, secondary astigma-
tism) aberrations of the human eye by considering the appropriate
properties of eye and light propagation [1, 23, 41, 50, 62, 67]. It
is important to note here that out-of-focus observations of the AR
text can be modeled as a low-order aberration resulting in defocus.
The wavefront aberration function W (x,y) is the standard way to
report human visual aberrations by considering the sum of the set of
weighted Zernike polynomials in Cartesian coordinates [63]:

W (x,y) = ∑
n,m∈Z

Cm
n Zm

n (x,y). (4)

Here, x and y are the coordinates relative to the center of the
pupil and normalized by the radius of the pupil [63]. The values
n and m represent order and frequency, respectively. Cm

n denotes
the Zernike coefficient in micrometers and defines the standard
aberration weight. In particular, defocus can be described by the
Z0

2(x,y) component [23, 67]:

Z0
2(x,y) =

√
3(2x2 +2y2 −1). (5)

The magnitude of the aberration of the eye is quantified by the
Zernike coefficients. Vision research has made extensive use of
Zernike coefficients from eye prescription data [41, 50, 67]. Dai [23]
calculated the Zernike coefficients for eye prescription data after
analyzing spherocylindrical ocular aberration as:

C0
2 =

R2(S+C/2)

4
√

3
. (6)

Here, R is the radius of the pupil in millimeters, S is the value of
the sphere in diopters, and C is the value of the cylinder in diopters.
For modeling individual refractive vision problems, these values can
be obtained from the prescription of glasses [41, 50, 67].

3.2 Modeling Out-of-Focus Aberration in AR

We propose using the Zernike defocus polynomial and mathematical
techniques to obtain Zernike coefficients to model out-of-focus aber-
ration in AR. Among low-order aberrations, only defocus aberration
is related to the accommodative stance of the human eye. Among the

parameters of C0
2 defined in equation 6, only S is related to defocus

(S< 0 for myopia and S> 0 for hyperopia), while C describes the im-
pact of astigmatism [67]. When observing out-of-focus content with
normal, or corrected-to-normal vision, no additional astigmatism
effects are introduced. Therefore, we can set C = 0. The modified
Zernike defocus coefficient for the out-of-focus aberration in an AR
system (see equation 7) is thus defined as

C0
2 =− R2(S)

4
√

3
. (7)

Calculating S Value: We developed a mathematical formulation to ob-
tain the S for the out-of-focus aberration in AR without considering
eye prescription data. Furthermore, the accommodation of the eyes
changes from one distance to another, and therefore S is not constant.
Previously, Xu and Li [67] developed the formulation to calculate the
S value only from the viewing distance or the focused distance while
modeling the lower-order visual aberration of an eye, to improve
content visibility on an HMD. Therefore, to our knowledge, this is
the first attempt to calculate the S value for out-of-focus aberration
in AR based on the focused real object and the out-of-focus virtual
object distances.

The focal length of the eye must first be computed. According
to the thin-lens formula, the focal length of the eye based on the
focused object is:

1

feye
=

1

dfocus

+
1

deye
, (8)

where feye is the focal length of the eye at the focused distance, dfocus

is the distance between eye’s lens and the focused object, and deye ≈
22mm, the distance between eye’s lens and retina [29]. Equation 8
represents an ideal situation when a person is focused on a specific
distance. However, this equation is not applicable for other out-of-
focus distances, which initiate with changing accommodation of the
human eye. Suppose that the distance of the out-of-focus object
from the eye lens is dout-of-focus. The aberration value of the eye, S,
can then be calculated in diopters using the following equation:

S =
1

dout-of-focus

− 1

dfocus

, (9)

where S denotes out-of-focus aberration in the eye in diopters and
dout-of-focus is the distance between the lens of the eye and the out-of-
focus object. From equation 9, it is understandable that the value of
S can be positive or negative. However, S ̸= 0 as the model supports
the diffraction theory of light waves. According to this theory, even
though there is no aberration, the retinal image will have a slight
blur [60], which is known as a diffraction-limited retinal image. In
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Figure 3: Retinal blurred image is generated for the amount of out-
of-focus aberration of +4.75D with a pupil diameter of 5mm. The
color map of PSF shows the intensity/frequency level of the wavefront.
Wavefront frequency values closer to zero (blue color) means less or
no blur.

addition, the following two scenarios could occur on the basis of the
S value.

Potential Scenarios: Assume that a person is focusing on a real font
at a far distance (4.00m) and an AR font is placed at a near distance
(0.20m). Therefore, we can calculate the focal length of the eye
while focusing the far distance using equation 8, feye = 0.0219m.
Finally, by putting all known values in equation 9, we get the out-
of-focus aberration value, S = +4.75D. Under this scenario, S is
positive. Similarly, S would be negative if the person is focusing on
a real font at a close distance (0.20m), and an AR font is placed at a
far distance (4.00m). Schematic diagrams of the potential scenarios
are given in Fig. 2.

Wavefront Aberration Function: Using equation 9, the eye’s out-of-
focus aberration (S) can be computed for different accommodation
changes. By putting the S value in equation 7, we get

C0
2 =− R2

4
√

3
×
(

1

dout-of-focus

− 1

ffocus

)

. (10)

Therefore, the final wavefront aberration function for out-of-focus
in AR is given below, where C2

0 and Z2
0(x,y) can be obtained from

equations 10 and 5:

W (x,y) =C0
2 ×Z0

2(x,y). (11)

We computed the amplitude function based on object size and
corresponding retinal image size by using the formulation of similar
triangles and similar rectangles (see Appendix). Therefore, by pro-
viding the final wavefront aberration function and amplitude function
for the out-of-focus problem in AR in equation 2, the pupil function
for the out-of-focus aberration is obtained. Here, λ = 550nm as only
black and white images are considered (standard monochromatic
simulation [23, 41]). To process color images, it is necessary to
apply a distinct filtering procedure to each of the color channels
using varying λ values for the RGB color. Using the principle of
convolution theorem, the final out-of-focus aberrated retinal image is
calculated. Fig. 3 shows out-of-focus aberrated retinal image based
on our proposed mathematical formulations. The PSF of the retinal
image is generated for the out-of-focus aberration of +4.75D with
a pupil diameter of 5mm. We assumed that the image size of the
focused object is 250(width)×250(height) for all PSF images and
their corresponding retinal blurred images.

We present the results of our modeled out-of-focus aberration
for various pupil sizes and out-of-focus aberrations (see Appendix).
This is in agreement with previous research on retinal images with
different pupil diameters [10, 11, 43], which showed that a larger
pupil size (e.g., 7mm) produces more blur than a smaller pupil
size (e.g., 2mm), although the amount of aberration is the same.
Furthermore, Liang and Williams [43] reported that the amount of
visual aberration was roughly the same for both the left and right
eyes. Accordingly, our defined out-of-focus aberration model is
applicable to both eyes.

4 OUT-OF-FOCUS ABERRATION CORRECTION IN AR

We consider a complete image-based out-of-focus correction
methodology for the out-of-focus problem in AR. In this methodol-

ogy, we implement the constrained total-variation (TV)-based image
deconvolution method to render virtual text for the out-of-focus con-
dition in AR. We called the final precorrected image a SharpView
font, a font that looks sharper when seen out of focus. We rendered
the font in white on a black image. All the original images (without
precorrection) in this research are Arial fonts because, compared to
other fonts, the Arial font has simple geometry.

In this research, to generate the precorrected image, the TV al-
gorithm minimizes a convex objective function by tuning a set of
parameters to achieve an optimal solution. We adopted the mono-
tone version of the fast iterative shrinkage/thresholding algorithm
(MFISTA) by Beck and Teboulle [13], which is a constrained TV
algorithm. Taking into account this algorithm, the optimal pre-
corrected image always has constrained or bounded pixel values
between 0 and 1. Furthermore, the methodology for calculating con-
trast reduction was adapted from Montalto et al. [50]. According to
Beck and Teboulle [13] and Montalto et al. [50], the general model
(see Equation 12) for the constrained TV-based image deconvolution
method to generate precorrected images is:

p(θ , Ic) = arg min
0≤∥p∥≤1

(∥k ∗ p− Ic∥L2 +θ ∥∇p∥L1). (12)

Here, I is the original image, Ic is the rescaled version of contrast of
the original image, p is the precorrected image, k is the PSF of the
out-of-focus visual aberration, ∗ defines the convolution operation,
θ is the regularization parameter, and ∇ is the gradient. Equation 12
attempts to compute the precorrected image (p) in such a way that
the convolved precorrected image (k ∗ p) is similar to the original
image, (k ∗ p)∼ Ic. The constrained TV-based model (equation 12)
can be divided into two terms:

1. ∥k ∗ p− Ic∥L2 is the deconvolution term of the model. This
term confirms that the convolved precorrected image is visually
similar to the original image in the L2 sense [50].

2. θ ∥∇p∥L1 is the regularization term of the constrained TV
algorithm, which is the TV norm of the precorrected image
in the L1 sense. This term estimates, controls, and monitors
the amount of ringing in the precorrected image. Furthermore,
it also contributes to generating sharp edges in the convolved
precorrected image of the model [50].

Contrast Rescaled Version of the Original Image (Ic): Contrast rescaled
version of the original image within the contrast range of lower con-
trast level (Clow = 0) to higher contrast level (Chigh = 1). Following
the contrast reduction technique of Montalto et al. [50], the reduced
contrast version of the original image (I) is

Ic = I × (Chigh −Clow)+Clow. (13)

The percentage of contrast loss CL is defined as

CL = (Clow +(1−Chigh))×100. (14)

Regularization Parameter (θ ): The regularization parameter behaves
like a weighted value of the regularization term, where θ > 0.0. If
the θ value is high, then more weight contributes to the regularization
term (θ ∥∇p∥L1 ), and the precorrected image will have less ringing
and be smoother. On the other hand, if the θ value is small, then
the contribution of the regularization parameter to the regularization
term will be small, and therefore the precorrected image will have
a larger amount of ringing and be less smooth. Therefore, the
regularization parameter allows us to control the desired level of
ringing in the precorrected image based on the visual acuity.
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Figure 4: Results of the constrained TV-based out-of-focus precorrec-
tion algorithm for the letter. The precorrected images are generated
with five different CL(%) and three different θ levels under out-of-focus
aberration of +4.75D over a 5mm pupil. The final precorrected images
are generated by following the description of section 4.2.

4.1 Initial Precorrected Image

In our research, we considered three types of textual information:
letter, word and phrase. The result of the out-of-focus constrained
TV-based precorrection algorithm for the letter is shown in Fig. 4
(see the supplemental files for word (Fig. 12) and phrase (Fig. 13).
The sub-rows under initial precorrected image contain the initial
result of our algorithm. The precorrected images are generated
for the out-of-focus aberration of +4.75D with a pupil diameter of
5mm. We considered five different amounts of contrast lossÐ10%,
30%, 50%, 70%, and 90%, and three different levels of regulation
parameters (θ ): large (θ = 0.01), medium (θ = 0.0001) and small
(θ = 0.000001). For this research, the font is 400 pixels in size for
the letter, word and phrase. However, each textual information is
rendered in different resolutions of images based on the amount of
information, for the letter: 500×500, for the word: 1100×500, and
for the phrase: 1400×1200 resolution image.

For a particular CL (%) amount, the original image is adjusted
to that CL (%) amount and then supplied to compute the out-of-
focus aberration and the precorrected image. The row of initial
precorrected Image from Fig. 4 shows that as the amount of CL (%)
increases, a larger amount of ringing appears in the precorrected
image for each level of θ . When comparing different levels of θ , we
found that the precorrected image gains more ringing with smaller
θ values. These characteristics in the precorrected images for the
values of θ and different amounts of CL (%) are also true for images
with words and phrases (see Appendix: Figs. 12 and 13).

4.2 Final Precorrected Image

One of the major challenges of the constrained TV-based deconvolu-
tion approach is the ringing artifacts (unwanted pixel intensities) on
the precorrected image. Alonso et al. [2] stated that not all the in-

=

=
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Initial Pre-corrected 
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Figure 5: Process of generating final precorrected images. By per-
forming the convolution between the original image I and the circular
mask 1C(r), we obtained the required mask M. The final precorrected
image is generated based on the Hadarmad product between the
precorrected image p and a mask M. The process followed the de-
scription of section 4.2.

formation on the precorrected image from the image deconvolution
method is necessary and extracted only the necessary information
from the initial precorrected image. We followed a similar principle
for the precorrected images of the out-of-focus correction method.
We observed that the ringing waves uniformly spread throughout the
precorrected image based on the different amounts of CL (%) and
θ (see Fig. 4). Human visual perception is highly sensitive to ring-
ing [33, 50] and can misperceive the image. Perceptually, enhanced
out-of-focus text legibility highly depends on the edge region of the
precorrected textual image. Therefore, only a finite ringing region is
needed around the edge of the textual information to perceive the
information with improved visual acuity during an out-of-focus situ-
ation. If no ringing is present, the pixel values around the edge will
ultimately not appear sharper because a constant amount of ringing
reduces the constrained bounded-pixel value and allows more free-
dom to form a perceptually sharper edge. Therefore, we considered
up to two waves of ringing in the final precorrected image.

The final precorrected image is generated based on the Hadarmad
product between the precorrected image p and a mask M. The mask
contains zeros where the information is unnecessary and ones where
the information needs to be extracted (see Fig. 5). To obtain the
required mask region, we first need to construct a circular mask
defined as the indicator function on the circle centered at (0,0) with
radius r, denoted by C(r)

1C(r)(x,y) =

{

1, if
√

x2 + y2 ≤ 1

0, otherwise

We take the radius r to be a percentage α of the radius of the PSF
rPSF , that is r = α · rPSF . By performing the convolution between
the original image I(x,y) and the circular mask 1C(r) we obtain the

required mask M(x,y) =
(

I ∗1C(r)

)

(x,y). Finally, the Hadamard

product of between the precorrected image p(x,y) and required
mask M(x,y) provides the final precorrected image p f inal(x,y) =
p(x,y)◦M(x,y). This process is illustrated in Fig. 5. Note that by
changing the value of α , the circular mask’s size will change, which
eventually determines the amount of ringing in the precorrected
image that we can select. Here we consider α = 1.5 to generate
one wave of ringing around the precorrected textual images. We
obtained this value using a trial-and-error approach.

The results of the final precorrected images are shown in the final
precorrected image rows of Fig. 4 (see Appendix for word (Fig. 12)
and phrase (Fig. 13)) for different combination of θ and CL(%) under
the out-of-focus aberration of +4.75D and pupil diameter of 5mm.
Therefore, we only removed the unnecessary ringing artifacts from
the precorrected images with mathematical formulations, and all
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other TV-based algorithm parameters, characteristics, and behavior
remain the same.

5 IMPLEMENTATION

The Matlab program for modeling out-of-focus aberration and TV-
based out-of-focus correction algorithms was executed on an MSI
laptop with an Intel Core i7 processor, 32 GB RAM, NVIDIA
GeForce RTX 2070 and 64-bit Windows 10 Pro Operating System.
Each precorrected image was created with a unique combination of
θ , CL (%), pupil diameter, focus distance and out-of-focus distance.
The overall mean time for generating a precorrected image for letter
was 11.92 seconds, for word was 16.97 seconds, and for phrase was
69.74 seconds. The precorrected image for phrase required more
time because of the larger image resolution and greater amount of
information.

6 EVALUATION

The goal of our evaluation is to quantify how sharp and legible our
constraint TV-based SharpView font is compared to the standard
Arial font during out-of-focus situations in an AR system. There-
fore, to quantify the sharpness of an image, we developed a novel
image gradient-based sharpness measurement technique for textual
information by considering the presence of blur in the edge region
of the font. Following the steps of our sharpness measurement
method, we evaluated precorrected images through synthetic simu-
lation evaluation and optically viewed camera captured evaluation,
and determined the combination of CL (%) and the regularization pa-
rameter (θ ) that is suitable for +4.75D out-of-focus aberration and
the diameter of the pupil of 5mm. However, we have not compared
our method with any existing deconvolution algorithms because
Montalto et al. [50] have already shown that the TV-based decon-
volution method increases visual acuity and legibility for textual
information more than any other method, such as Weiner filtering,
for visual aberrations.

6.1 Sharpness Measurement Method

The main goal of our sharpness measurement method is to process
the image in such a way that the image only contains the pixels that
contribute to blur. Let us assume that the sharpness measurement
method estimates the blur of the grayscale image t(x,y) where x
and y are the row and column of the image. The mathematical
formulations to estimate the presence of blur amount in the t(x,y)
image are:

Step 1: In this step we compute an image Bt that contains the blurry
regions of the target image t. We start by computing an image of
the magnitude of the gradient of the image t by using the Sobel
method [27, 37]

δt(x,y) =
√

t2
x + t2

y .

We use δt as a map to decide which pixels of t are actually blurry
and we want to keep. We keep pixels (x,y) in the image t were the
value δt(x,y) are within a percentage range [α,β ] of all values of δt .
The lower bound allows us to remove the noise of the optical system
and the upper bound takes care of removing the edges of the region.
The resulting image is defined as

Bt(x,y) =

{

t(x,y), if α ≤ δt (x,y)
maxδt−minδt

≤ β

0, Otherwise
. (15)

For all our images, we chose [α,β ] = [0.015,0.9].

Step 2: To handle different amounts of CL (%) of the precorrected
images in the sharpness measurement technique, we normalize the
image Bt with the l2 norm:

Bn =
Bt

∥Bt∥l2

. (16)

Previously, Wee et al. [64] performed a similar normalization step
while measuring the sharpness of the image using eigenvalues. By
performing this normalization step, our image sharpness measure-
ment method becomes less dependent on image contrast effects.

Step 3: In the final step, the sharpness measurement method quanti-
fies the amount of blur in an image t by dividing the l1 norm of the
image (∥Bn∥l1

) with the number of pixels of the image Bn (size(Bn)).
This gives a real number b, called the blur amount of the the image
t:

bt =
∥Bn∥L1

size(Bn)
. (17)

The values of blur amount bt are reported in Fig. 1.
Using the blur amount we can compare the sharpness between

two images. If one image is t1 and the other image is t2, then we
could determine the sharper image using the formula

Sharp(t1, t2) =
bt1 −bt2

bt1
×100. (18)

Here, if Sharp(t1, t2) > 0, then t2 is sharper than t1; similarly if
Sharp(t1, t2)< 0, then t1 is sharper than t2.

6.2 Parameter Selection

One of the essential parts of our proposed method is to obtain the
pre-correction algorithm’s parameter that improves the out-of-focus
issues. It is unknown which combination of CL (%) and regular-
ization parameter(θ ) of the pre-correction algorithm is appropriate
and valid to improve out-of-focus text legibility with respect to a
particular out-of-focus aberration and pupil diameter.

Previously, while investigating image-based correction for visu-
ally impaired people, Montalto et al. [50] proposed a novel relative
total variation term (τ) to control the trade-off between contrast loss
(%) and ringing (θ ), and considered this as the performance measure-
ment indicator in their research. A single τ value can be obtained
from different combinations of CL (%) and θ for a particular visual
aberration. However, we wanted to focus on sharpness improvement
regardless, and we did not know the optimal τ value for the images
that we studied. Therefore, we considered nine different amounts
of CL (%) (10%,20%,30%,40%,50%,60%,70%,80% and 90%),
and three values of θ (1e−02,1e−04,1e−06) for our evaluation.

Furthermore, we performed an analysis of the parameters of our
algorithm to understand the relationship between CL (%), the regu-
larization parameter (θ ), and the TV value. The TV value is the TV
norm of the precorrected image (∥∇p∥L1 ), which defines the amount
of energy gained in the precorrected image from optimization. This
analysis was performed only for the pupil diameter of 5mm under
an aberration out-of-focus of +4.75D. Based on our observations,
small values of θ yield a high TV value (more ringing) in the precor-
rected image, compared to large values of θ in each type of textual
information for a specific amount of CL (%). We also observed
that for a particular combination of CL (%) and the regularization
parameter (θ ), letter has a much lower TV value than word and
phrase. Therefore, the TV values also depend on the resolution of
the image and the amount of information in it.

6.3 Synthetic Simulation Evaluation

Method: This evaluation method examines whether the synthetically
convolved precorrected images show sharper and better visual acuity
compared to the synthetically simulated out-of-focus blurred image.
The upper portion of Fig. 6 shows the steps of the evaluation of
the synthetic simulation under +4.75D out-of-focus aberration and
5mm diameter pupil size for the single letter B. Let us assume
that the precorrected image is p, the original image is I, and the
PSF of the out-of-focus aberration is k. Therefore, the synthetically
convolved precorrected image is k⊗ p (see Fig. 6 upper-right), and
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Figure 6: Sharpness comparison in the synthetic simulation and the
optical camera captured evaluation methods for the single letter B.
The precorrected font (SharpView Font) is generated for the out-of-
focus aberration of +4.75D and pupil diameter of 5mm. The top part
of the figure displays the evaluation results of the synthetic simulation
approach, while the bottom part shows the camera-captured result
through the optics of the benchtop AR display. Comparing the blurred
edge regions from the standard Arial font with SharpView font, it is
apparent that our generated SharpView Font has a sharper represen-
tation than the Standard Arial font both synthetically and optically with
the camera captured. Also, see Fig. 1 for the word and phrase.

the synthetically simulated out-of-focus retinal blurred image is
k⊗ I (see Fig. 6 upper-left). Following the steps of the sharpness
measurement method, we achieved the blurred edge region. After
that, by comparing the blurred edge region of simulated out-of-focus
blurred and convolved precorrected images (see equation 18), we
found that our generated precorrected image for the letter B is 42.1%
sharper than the original Arial letter (see upper portion of Fig. 6).
Furthermore, the precorrected word and phrase show 43.24% and
39.61% sharper representations than the original image, respectively,
through the synthetic evaluation.

Results: The results for our simulation are shown in the top row of
Fig. 7, where three panels show the results of the three different
textual information (letter, word, and phrase). The x-axis shows the
amount of contrast loss (%). The y-axis shows the percentage of
sharpness of the precorrected image compared to the retinal out-of-
focus blurred image under +4.75D out-of-focus aberration and 5mm
diameter of the pupil. Each panel has 30 data points representing
a unique combination of CL (%) and regularization parameter (θ ).
Three different color lines represent three different values of θ . The
simulated row panel in Fig. 7 shows that as the amount of CL (%)
increases, the sharpness (%) increases for each value of θ for each
textual information. Precorrected images with maximum visual
acuity and legibility for each textual information in the synthetic
simulation are obtained with CL = 90% and θ = 1e− 06 for the
+4.75D of out-of-focus aberration and 5mm pupil diameter, and the
visual representations are given in Fig. 1.

6.4 Optically Viewed Camera Captured Evaluation

In this evaluation stage, we examined whether the constrained TV-
based out-of-focus correction method produces sharper and im-
proved visual acuity through the optics of the OST AR display. In
this case, this research compared the camera-captured precorrected
image at the moment of out-of-focus with the camera-captured out-
of-focus blurred image. All images in this evaluation were taken

Figure 7: The results of the synthetic simulation and optically viewed
camera captured evaluation for the +4.75D out-of-focus aberration
and 5mm diameter of the pupil size show that as the amount of CL
(%) increases, the sharpness increases (%) for each θ value for
each textual information. The highest sharpness is achieved with the
CL = 90% and θ = 1e− 06 for all textual information and evaluation
methods.

through the optics of the AR display with the camera (see Fig. 8).

Apparatus: We used a custom-made tabletop OST AR display as
an experimental display, which we call the AR Haploscope [7, 55,
56, 61]. In addition, we used a DSLR camera (Nikon D3400) to
capture images through the AR optics. A remote camera controller
was used to reduce the displacement error from clicking the DSLR
camera’s button. A physical monitor was used to display real-world
information.

Setup and Procedure: The setup of the camera-based evaluation
method is shown in Figs. 8a and b. The DSLR camera was mounted
on a tripod to look through the center of the optical combiners of
the AR Haploscope. The camera only focused on the real world
information (cross) at 4.0m / 0.25D, which was displayed on a phys-
ical monitor (Dell Ultra-sharp Monitor: U2913WM) with a display
resolution of 2560×1080 pixels (see Fig. 8a). Each virtual textu-
ral information was displayed on the right image generators of the
AR Haploscope (Fig. 8b). The image generator (Feelworld F570
5.7º 4K) had a diagonal size of 14.5 cm and a display resolution
of 1920× 1080 pixels. In our evaluation, we used an accommo-
dation lens with a power of 5.00D to place the virtual information
at 0.20m. The camera captured both real and virtual information
through the optical combiner of the AR Haplosocpe, see Fig. 8c,
where the left image is virtual and the right image is real (cross).
In addition, each precorrected image (virtual information) was ran-
domly presented three times to remove any noise from the camera
setting. Furthermore, we used an external remote controller for the
camera to capture the image so that no shaking noise contributed to
the captured image.

Camera Settings: In our camera-based evaluation, the critical step was
to confirm that the camera was carefully focused on the real cross
at 4.0m and that a sharp real cross image was formed. To achieve
this, this research considered the camera’s concept of depth of field
(DoF). The DoF of the camera is the distance or area between the
DoF near limit and the DoF far limit. We placed the camera in the
manual configuration option. We considered a deep DoF of 3m for
the camera, where the far DoF limit was 6m and the near DoF limit

was 3m [47], by setting the aperture f-stop to:
f

22 , the lens focal

length to: 55mm, the ISO to: 6400, and the shutter speed to: 1
50 .

In total, we captured 10 (CL(%)) × 3 (θ ) × 3 (repetitions) = 90
precorrected images for the out-of-focus aberration of +4.75D.
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Figure 8: Setup of the optically viewed camera captured image eval-
uation. (a) A DSLR camera is mounted on a tripod and focused on
a real cross (’X’) on the physical monitor, which is located at 4.0m.
(b) The precorrected image is displayed on the benchtop OST AR
display’s monitor as virtual content in front of the camera at 0.20m.
This precorrected image is generated with CL = 90% and θ = 1e−06

for the out-of-focus aberration of +4.75D and pupil diameter of 5mm.
The precorrected image is optically out-of-focus through the lens of
the camera. (c) The camera captured image where the camera is
focused on the real cross, and the precorrected image looks sharper,
is more legible, and has improved visual acuity in the out-of-focus AR
situation. In addition, the portion of the precorrected image captured
by the camera is cropped for evaluation.

Results: The bottom portion of Fig. 6 shows the steps in evaluating
the captured images. Unlike the convolved precorrected images of
the synthetic simulation approach, the camera-captured images are
not noise-free (see Fig. 8c). The noises on the camera captured
precorrected images mainly came from the internal camera process-
ing mechanism. Therefore, we performed two additional denoising
operations in the sharpness measurement method to reduce noise.
In the process, the Wiener filtering method for two-dimensional
pixel-wise adaptive noise removal was considered by estimating the
local mean and standard deviation of the image [44]. The Wiener
filter size for the letter, word, and phrase was 10×10. We performed
this noise removal operation before beginning the sharpness mea-
surement method and before the normalization step. The blurred
edge region of the camera captured blurred and precorrected im-
ages were obtained by the sharpness measurement method (see
subsection 6.1). Comparing the blurred edge region of the captured
out-of-focus blurred and precorrected images, we found that our
generated precorrected image for the letter ‘B’ is 24.69% sharper
than the original Arial letter (see bottom portion of Fig. 6). Further-
more, the precorrected word and phrase show 26.33% and 31.71%
sharper representations than the original image, respectively. The
results of the optically camera-captured evaluation are shown in the
bottom row (Captured) of Fig. 7. Each panel shows the average
sharpness value (%) for the unique combination of CL (%) and the
regularization parameter (θ ). This indicates that as the amount of
CL (%) increases, the sharpness (%) increases for each value of θ in
each textual information. The precorrected images with maximum
visual acuity and legibility for each textual information in the cam-
era captured are obtained with CL = 90% and θ = 1e−06 for the
+4.75D of out-of-focus aberration, and 5mm diameter of pupil size.
Visual representations are given in Fig. 1.

7 CONCLUSION AND FUTURE WORK

The out-of-focus issue of virtual objects has been relatively unex-
plored in the field of AR research. However, out-of-focus blur has

been found to reduce performance [7, 25]. Therefore, the objective
of this investigation was to create and evaluate a new font, called
a SharpView font, which would appear sharper and more legible
when viewed out of focus. To do this, a mathematical model of
out-of-focus blur (retinal blurred image) was created using Zernike
polynomials, a perceptual image processing-based focus correction
algorithm was developed, and an image gradient-based algorithm
was created to measure and quantify font sharpness in the blurred
edge region. The results of the synthetic simulation and optical
camera-based measurement showed that the constrained TV-based
image precorrection algorithm improved visual acuity and legibility
for the textual image for the out-of-focus issue in the AR system
both visually and quantitatively. Both the simulation and the images
captured through the optics revealed that the SharpView font had
20-45% more sharpness and improved visual acuity compared to the
standard font. The evaluation results also showed that the precor-
rected image with high visual acuity out of focus was obtained with
90% contrast loss and a regularization parameter of 1e−06 for the
textual information through simulation and camera capture.

Although we successfully implemented the novel SharpView font
for the problem of out-of-focus in the AR system, some specific
limitations still exist that suggest future work.

User Based Evaluation: We evaluated the constrained TV-based out-
of-focus correction algorithm through synthetic simulation and an
optically viewed camera-captured approach. However, this research
did not perform a formal user study. In the future, it is necessary to
consider human-based research to determine how much and what
values of the algorithm parameters are responsible for improving the
text legibility under out-of-focus with our developed out-of-focus
correction method. The experiment should consider an eye tracker
to know where the user is focusing to switch on the out-of-focus
font rendering. In addition, the eye tracker is needed to get the user’s
pupil data for the algorithm.

Out-of-Focus Aberrations, Pupil Diameters, and Evaluation Metric: In this
research, out-of-focus aberration of +4.75D with a pupil diameter
of 5mm was evaluated. Furthermore, our sharpness metric did not
compare the results with other metrics. Potential future research
could consider a range of out-of-focus aberration values with a range
of pupil diameters to quantify and measure the effectiveness of the
focus correction method. In the future, it is important for researchers
to also investigate the threshold of the eye’s depth of focus. Further-
more, it would be beneficial to explore an alternative modulation
transfer function (MTF) in order to compare our evaluation metric
for measuring sharpness.

Replicate Transient Focal Blur Experiment: One of the hypotheses be-
hind our out-of-focus correction method is that generated precor-
rected images would mitigate the transient out-of-focal blur effect
in AR. Therefore, one of the potential future studies could include
the precorrected image from the constrained TV-based out-of-focus
correction method only during the transient focal blur period by
replicating the text-based visual search task reported by Gabbard et
al. [25] and Arefin et al. [6, 7].

Additional Graphical Elements: We have developed and evaluated the
constrained TV-based out-of-focus correction method only for tex-
tual information. Future research could confirm this algorithm for
other fundamental graphical elements of OST AR systems, such as
road signs, directions, symbols, and digital notifications.
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APPENDIX

A AMPLITUDE FUNCTION

Let us assume that the focused font height is hfocused , the width is
wfocused the distance from the eye is dfocus, the retinal image height
is hretinal, the width is wretinal and the distance between the lens
of the eye and the retina is deye = 0.022m. The ̸ ACB is closely
equal to the ̸ DCE, so according to the principle and geometry of a
similar triangle from Fig. 9a, the retinal image’s height (hretinal) was
calculated. Similarly, according to the principle and geometry of a
similar rectangle from Fig. 9b, the retinal image’s width (wretinal)
was calculated. The equations are given below:

hfocused

dfocused

≈ hretinal

deye
(19)

wfocused

hfocused

≈ wretinal

hretinal

(20)

dfocused

deye

hretinal

A

B
C D

E

hfocused

wfocused
wretinal

Focused Image
Retinal Image

(a) (b)

Figure 9: Amplitude function calculation for out-of-focus aberration
using the principles of similar triangles and rectangles.

B RETINAL IMAGES OF DIFFERENT AMOUNTS OF PUPIL SIZE

AND OUT-FOCUS ABERRATIONS

Fig. 10 shows the table of different PSF images and its corresponding
retinal blurred image for a range of pupil diameter (2mm to 8mm)
under the out-of-focus aberration of +4.75D. Furthermore, Fig. 11
shows the table of different PSF images and its corresponding retinal
blurred image for different out-of-focus aberrations under the pupil
diameter of 5mm.
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Figure 10: Effects of different pupil diameters (ranges from 2mm

to 8mm) in the retinal image quality under +4.75D of out-of-focus
aberration in AR. The PSF image shows how much the wavefront
intensity/frequency contributes to the blur. The color map shows the
intensity/frequency level of the wavefront. Wavefront frequency values
closer to zero (Blue color) mean less or no blur. As the wavefront
frequency values increase, the amount of blur increases. Furthermore,
the wider the circle, the more waves are away from the center and the
higher the blur. This means that more of the wavefront at this point is
contributing to the retinal blur.
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Figure 11: Effects of different out-of-focus aberration values in the
retinal image quality under 5mm diameter of the pupil size. The retinal
blur amount changes according to the magnitude of the out-of-focus
aberration. Positive and negative signs appear based on the described
scenarios in 3.2.

C PRECORRECTED IMAGES FOR WORD AND PHRASE

The initial and final precorrected images for word and phrase (see
Subsections 4.1 and 4.2) are displayed in Figs. 12 and 13. As the
CL(%) increases, more ringing appears in the precorrected image
for each level of θ , similar to the letter results.
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Figure 12: Results of the constrained TV-based out-of-focus pre-
correction algorithm for word. The precorrected images are generated
with ten different CL(%) and three different θ levels under out-of-focus
aberration of +4.75D over a 5mm pupil. Final precorrected images
are generated by following the description of section 4.2.

Focus distance = 4.0m, Out of focus distance = 0.20m, 
Out of focus Aberration (Diopter) = +4.75D, Pupil Diameter = 5mm 

CL (%) 10 30 50 70 90 

Contrast 

Adjusted 

Original 

Image (Ic) 
     

In
it
ia

l 
P

re
-c

o
rr

e
c
te

d
 I

m
a

g
e

 

θ
 =

 0
.0

1
 

 

     

θ
 =

 0
.0

0
0

1
 

 

     

θ
 =

 

0
.0

0
0

0
0

1
 

     

F
in

a
l 
P

re
-c

o
rr

e
c
te

d
 I

m
a

g
e

 

θ
 =

 0
.0

1
 

 

     

θ
 =

 0
.0

0
0

1
 

 

     

θ
 =

 

0
.0

0
0

0
0

1
 

     

Figure 13: Results of the constrained TV-based out-of-focus pre-
correction algorithm for phrase. The precorrected images are gener-
ated with ten different CL(%) and three different θ levels under out-
of-focus aberration of +4.75D over a 5mm pupil. Final precorrected
images are generated by the following description of section 4.2.
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