Human-Centered Fidelity Metrics for Virtual Environment Simulations

Three Numbers from Standard Experimental Design and Analysis:

α, power, effect magnitude

VR 2005 Tutorial

J. Edward Swan II, Mississippi State University

Outline

- Introduction and Motivation
- Alpha (α):
 - The Logic of Hypothesis Testing
 - Interpreting α ; accepting and rejecting H_0
 - VR and AR examples
- Power:
 - Power and hypothesis testing
 - Ways to use power
 - VR and AR examples
- Effect Magnitude:
 - The Logic of ANOVA
 - Calculating η^2 and ω^2
 - VR and AR examples

Why Human Subject (HS) Experiments?

- VR and AR hardware / software more mature
- Focus of field:
 - Implementing technology → using technology
- Increasingly running HS experiments:
 - How do humans perceive, manipulate, cognate with VR, AR-mediated information?
 - Measure utility of VR / AR for applications
- HS experiments at VR:

VR year	papers	%	sketches	%	posters	%
2003	10 / 29	35%			5 / 14	36%
2004	9 / 26	35%			5 / 23	22%
2005	13 / 29	45%	1/8	13%	8 / 15	53%

Logical Deduction vs. Empiricism

Logical Deduction

- Analytic solutions in closed form
- Amenable to proof techniques
- Much of computer science fits here
- Examples:
 - Computability (what can be calculated?)
 - Complexity theory (how efficient is this algorithm?)

Empirical Inquiry

- Answers questions that cannot be proved analytically
- Much of science falls into this area
- Antithetical to mathematics, computer science

Where is Empiricism Used?

- Humans are very non-analytic
- Fields that study humans:
 - Psychology / social sciences
 - Industrial engineering
 - Ergonomics
 - Business / management
 - Medicine
- Fields that don't study humans:
 - Agriculture, natural sciences, etc.
- Computer Science:
 - HCI
 - Software engineering

Alpha (α)

- Introduction and Motivation
- Alpha (α):
 - The Logic of Hypothesis Testing
 - Interpreting α ; accepting and rejecting H_0
 - VR and AR examples
- Power:
 - Power and hypothesis testing
 - Ways to use power
 - VR and AR examples
- Effect Magnitude:
 - The Logic of ANOVA
 - Calculating η^2 and ω^2
 - VR and AR examples

Populations and Samples

Population:

- Set containing every possible element that we want to measure
- Usually a Platonic, theoretical construct
- Mean: μ Variance: σ^2 Standard deviation: σ

Sample:

- Set containing the elements we actually measure (our subjects)
- Subset of related population
- Mean: \overline{X} Variance: s^2 Standard deviation: s Number of samples: N

Hypothesis Testing

 Goal is to infer population characteristics from sample characteristics

Testable Hypothesis

- General hypothesis: The research question that motivates the experiment.
- Testable hypothesis: The research question expressed in a way that can be measured and studied.
- Generating a good testable hypothesis is a real skill of experimental design.
 - By good, we mean contributes to experimental validity.
 - Skill best learned by studying and critiquing previous experiments.

Testable Hypothesis Example

- General hypothesis: Stereo will make people more effective when navigating through a virtual environment (VE).
- Testable hypothesis: We measure time it takes for subjects to navigate through a particular VE, under conditions of stereo and mono viewing. We hypothesis subjects will be faster under stereo viewing.
- Testable hypothesis requires a measurable quantity:
 - Time, task completion counts, error counts, etc.
- Some factors effecting experimental validity:
 - Is VE representative of something interesting (e.g., a real-world situation)?
 - Is navigation task representative of something interesting?
 - Is there an underlying theory of human performance that can help predict the results? Could our results contribute to this theory?

What Are the Possible Alternatives?

- Let time to navigate be μ_s : stereo time; μ_m : mono time
 - Perhaps there are two populations: $\mu_s \mu_m = d$

- Perhaps there is one population: $\mu_s - \mu_m = 0$

Hypothesis Testing Procedure

- 1. Develop testable hypothesis H_1 : $\mu_s \mu_m = d$
 - (E.g., subjects faster under stereo viewing)
- 2. Develop null hypothesis H_0 : $\mu_s \mu_m = 0$
 - Logical opposite of testable hypothesis
- 3. Construct sampling distribution assuming H_0 is true.
- 4. Run an experiment and collect samples; yielding sampling statistic *X*.
 - (E.g., measure subjects under stereo and mono conditions)
- 5. Referring to sampling distribution, calculate conditional probability of seeing X given H_0 : $\alpha = p(X | H_0)$.
 - If probability is low ($\alpha \le 0.05$, $\alpha \le 0.01$), we are unlikely to see X when H_0 is true. We reject H_0 , and embrace H_1 .
 - If probability is not low ($\alpha > 0.05$), we are likely to see X when H_0 is true. We do not reject H_0 .

Example 1: VE Navigation with Stereo Viewing

- 1. Hypothesis H_1 : $\mu_s \mu_m = d$
 - Subjects faster under stereo viewing.
- 2. Null hypothesis H_0 : $\mu_s \mu_m = 0$
 - Subjects same speed whether stereo or mono viewing.
- 3. Constructed sampling distribution assuming H_0 is true.
- 4. Ran an experiment and collected samples:
 - 32 subjects, collected 128 samples
 - $-X_s = 36.431 \text{ sec}; X_m = 34.449 \text{ sec}; X_s X_m = 1.983 \text{ sec}$
- 5. Calculated conditional probability of seeing 1.983 sec given H_0 : $\alpha = p(1.983 \text{ sec} \mid H_0) = 0.445$.
 - $-\alpha$ = 0.445 not low, we are likely to see 1.983 sec when H_0 is true. We do not reject H_0 .
 - This experiment did not tell us that subjects were faster under stereo viewing.

Example 2: Effect of Intensity on AR Occluded Layer Perception

- 1. Hypothesis H_1 : $\mu_c \mu_d = d$
 - Tested constant and decreasing intensity. Subjects faster under decreasing intensity.
- 2. Null hypothesis H_0 : $\mu_c \mu_d = 0$
 - Subjects same speed whether constant or decreasing intensity.
- 3. Constructed sampling distribution assuming H_0 is true.
- 4. Ran an experiment and collected samples:
 - 8 subjects, collected 1728 samples
 - $-X_c = 2592.4 \text{ msec}$; $X_d = 2339.9 \text{ msec}$; $X_c X_d = 252.5 \text{ msec}$
- 5. Calculated conditional probability of seeing 252.5 msec given H_0 : $\alpha = p(252.5 \text{ msec} \mid H_0) = 0.008$.
 - $-\alpha$ = 0.008 is low ($\alpha \le 0.01$); we are unlikely to see 252.5 msec when H_0 is true. We reject H_0 , and embrace H_1 .
 - This experiment suggests that subjects are faster under decreasing intensity.

Some Considerations...

- The conditional probability $\alpha = p(X \mid H_0)$
 - Much of statistics involves how to calculate this probability;
 source of most of statistic's complexity
 - Logic of hypothesis testing the same regardless of how $\alpha = p(X \mid H_0)$ is calculated
 - If you can calculate $\alpha = p(X | H_0)$, you can test a hypothesis
- The null hypothesis H₀
 - $-H_0$ usually in form $f(\mu_1, \mu_2,...) = 0$
 - Gives hypothesis testing a double-negative logic: assume H_0 as the opposite of H_1 , then reject H_0
 - Philosophy is that can never prove something true, but can prove it false
 - H_1 usually in form $f(\mu_1, \mu_2,...) \neq 0$; we don't know what value it will take, but main interest is that it is not 0

When We Reject H₀

- Calculate $\alpha = p(X \mid H_0)$, when do we reject H_0 ?
 - In psychology, two levels: $\alpha \le 0.05$; $\alpha \le 0.01$
 - Other fields have different values
- What can we say when we reject H_0 at $\alpha = 0.008$?
 - "If H_0 is true, there is only an 0.008 probability of getting our results, and this is unlikely."
 - Correct!
 - "There is only a 0.008 probability that our result is in error."
 - Wrong, this statement refers to $p(H_0)$, but that's not what we calculated.
 - "There is only a 0.008 probability that H_0 could have been true in this experiment."
 - Wrong, this statement refers to $p(H_0 \mid X)$, but that's not what we calculated.

When We Don't Reject H₀

- What can we say when we don't reject H_0 at $\alpha = 0.445$?
 - "We have proved that H₀ is true."
 - "Our experiment indicates that H₀ is true."
 - Wrong, statisticians agree that hypothesis testing cannot prove H_0 is true. (But see the section on Power).
- Statisticians do not agree on what failing to reject H_0 means.
 - Conservative viewpoint (Fisher):
 - We must suspend judgment, and cannot say anything about the truth of H_0 .
 - Alternative viewpoint (Neyman & Pearson):
 - We "accept" H₀, and act as if it's true for now...
 - But future data may cause us to change our mind

Hypothesis Testing Outcomes

		Decision				
		Reject H ₀	Don't reject H ₀			
		correct	wrong			
True	H_0 false	a result!	type II error			
state		$p = 1 - \beta = power$	$p = \beta$			
of the		wrong	correct			
world	H ₀ true	type I error	(but wasted time)			
		$p = \alpha$	$p = 1 - \alpha$			

- $\alpha = p(X | H_0)$, so hypothesis testing involves calculating α
- Two ways to be right:
 - Find a result
 - Fail to find a result and waste time running an experiment
- Two ways to be wrong:
 - Type I error: we think we have a result, but we are wrong
 - Type II error: a result was there, but we missed it

When Do We Really Believe a Result?

- When we reject H_0 , we have a result, but:
 - It's possible we made a type I error
 - It's possible our finding is not reliable
 - Just an artifact of our particular experiment
- So when do we really believe a result?
 - Statistical evidence
 - α level: (p < .05, p < .01, p < .001)
 - power, effect magnitude
 - Meta-statistical evidence
 - Plausible explanation of observed phenomena
 - Based on theories of human behavior:
 perceptual, cognitive psychology; control theory, etc.
 - Repeated results
 - Especially by others

Power

- Introduction and Motivation
- Alpha (α):
 - The Logic of Hypothesis Testing
 - Interpreting α ; accepting and rejecting H_0
 - VR and AR examples
- Power:
 - Power and hypothesis testing
 - Ways to use power
 - VR and AR examples
- Effect Magnitude:
 - The Logic of ANOVA
 - Calculating η^2 and ω^2
 - VR and AR examples

Interpreting α , β , and Power

		Decision			
		Reject H ₀	Don't reject H ₀		
True state	H ₀ false	$a \text{ result!}$ $p = 1 - \beta = \text{power}$	type II error ρ = β		
of the world	H ₀ true	type I error $p = \alpha$	wasted time $p = 1 - \alpha$		

- If H₀ is true:
 - α is probability we make a
 type I error: we think we have a
 result, but we are wrong
- If H₁ is true:
 - β is probability we make a type II error: a result was there, but we missed it
 - Power is a more common term than β

Increasing Power by Increasing α

• Illustrates α / power tradeoff

• Increasing α :

- Increases power
- Decreases type II error
- Increases type I error

Decreasing α:

- Decreases power
- Increases type II error
- Decreases type I error

Increasing Power by Measuring a Bigger Effect

- If the effect size is large:
 - Power increases
 - Type II error decreases
 - α and type I error staythe same

 Unsurprisingly, large effects are easier to detect than small effects

Increasing Power by Collecting More Data

- Increasing sample size (N):
 - Decreases variance
 - Increases power
 - Decreases type II error
 - α and type I error stay the same
- There are techniques that give the value of *N* required for a certain power level.

 β α Here, effect size remains the same, but variance drops by half.

power

Power and VR / AR Fidelity Metrics

• Need α , effect size, and sample size for power:

power =
$$f(\alpha, |\mu_0 - \mu_1|, N)$$

- Problem for VR / AR:
 - Effect size $|\mu_0 \mu_1|$ hard to know in our field
 - Population parameters estimated from prior studies
 - But our field is so new, not many prior studies
 - Can find effect sizes in more mature fields
- Post-hoc power analysis:

effect size =
$$|X_0 - X_1|$$

- Estimate from sample statistics
- But this makes statisticians grumble (e.g. [Howell 02] [Cohen 88])

Other Uses for Power

1. Number samples needed for certain power level:

$$N = f(\text{ power, } \alpha, |\mu_0 - \mu_1| \text{ or } |X_0 - X_1|)$$

- Number extra samples needed for more powerful result
- Gives "rational basis" for deciding N [Cohen 88]
- 2. Effect size that will be detectable:

$$|\mu_0 - \mu_1| = f(N, power, \alpha)$$

3. Significance level needed:

$$\alpha = f(|\mu_0 - \mu_1|) \text{ or } |X_0 - X_1|, N, \text{ power })$$

(1) is the most common power usage

Arguing the Null Hypothesis

- Cannot directly argue H_0 : $\mu_s \mu_m = 0$. But we can argue that $|\mu_0 \mu_1| < d$.
 - Thus, we have bound our effect size by d.
 - If d is small, effectively argued null hypothesis.

Example of Arguing H_0

• We know GP is effective depth cue, but can we get close with other graphical cues?

ground plane	drawing style	opacity	intensity	mean error*
on	all levels	both levels	both levels	0.144
off	wire+fill	decreasing	decreasing	0.111

*F(1,1870) = 1.002, p = .317

• Our effect size is d = .087 standard deviations

power(
$$\alpha$$
 = .05, d = .087, N = 265) = .17

- Not very powerful. Where can our experiment bound d? $d(N = 265, power = .95, \alpha = .05) = .31$ standard deviations
- This bound is significant at α = .05, β = .05, using same logic as hypothesis testing.

But how meaningful is d < .31? Other significant d's:

 Not very meaningful. If we ran an experiment to bound d < .1, how much data would we need?

$$N(\text{power} = .95, \alpha = .05, d = .1) = 2600$$

• Original study collected N = 3456, so N = 2600 reasonable

Effect Magnitude

- Introduction and Motivation
- Alpha (α):
 - The Logic of Hypothesis Testing
 - Interpreting α ; accepting and rejecting H_0
 - VR and AR examples
- Power:
 - Power and hypothesis testing
 - Ways to use power
 - VR and AR examples
- Effect Magnitude:
 - The Logic of ANOVA
 - Calculating η^2 and ω^2
 - VR and AR examples

ANOVA: Analysis of Variance

- *t*-test used for comparing two means
 - (2 x 1 designs)
- ANOVA used for factorial designs
 - Comparing multiple levels ($n \times 1$ designs)
 - Comparing multiple independent variables $(n \times m, n \times m \times p)$, etc.
 - Can also compare two levels (2 x 1 designs);
 ANOVA can be considered a generalization of a t-test
- No limit to experimental design size or complexity
- Most widely used statistical test in psychological research
- ANOVA based on the F Distribution; also called an F-Test

How ANOVA Works

- Null hypothesis H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$; H_1 : at least one mean differs
- Estimate variance between each group: MS_{between}
 - Based on the difference between group means
 - If H_0 is true, accurate estimation
 - If H_0 is false, biased estimation: overestimates variance
- Estimate variance within each group: MS_{within}
 - Treats each group separately
 - Accurate estimation whether H_0 is true or false
- Calculate F critical value from ratio: F = MS_{between} / MS_{within}
 - If $F \approx 1$, then accept H_0
 - If F >> 1, then reject H_0

ANOVA Example

- Hypothesis H₁:
 - Platform (Workbench, Desktop, Cave, or Wall) will affect user navigation time in a virtual environment.
- Null hypothesis H_0 : $\mu_b = \mu_d = \mu_c = \mu_w$.
 - -Platform will have no effect on user navigation time.
- Ran 32 subjects, each subject used each platform, collected 128 data points.

Source	SS	df	MS	F	p
Between (platform)	1205.8876	3	401.9625	3.100*	0.031
Within (P x S)	12059.0950	93	129.6677		

*p < .05

• Reporting in a paper: F(3, 93) = 3.1, p < .05

Measures of Effect Magnitude

- Hypothesis Testing with ANOVA gives us:
 - α: measures effect significance
- From ANOVA table, can calculate measures of effect magnitude
 - Related to effect size d from power analysis
- Many calls for reporting effect magnitude in addition to α :
 - Current statistics textbooks
 - American Psychological Association
 - Many journals and other venues
- Related to considering / controlling both:
 - Probability of type I error (α)
 - Probability of type II error (β)

Calculating η^2

- η^2 (eta-squared):
 - Percentage of variance accounted for by an effect
 - Ratio of SS_{between} / SS_{within}:

Source	SS	df	MS	F	p
Between (platform)	1205.8876	3	401.9625	3.100*	0.031
Within (P x S)	12059.0950	93	129.6677		

- $\eta^2 = .100$
 - Platform accounts for 10% of observed variance
- Calculate by putting ANOVA table in spreadsheet
 - $-\eta^2$ not given by Minitab
 - $-\eta^2$ not given by SPSS (but it gives partial- η^2 and calls it η^2 !)

Calculating ω^2

- ω^2 (omega-squared):
 - Percentage of variance accounted for by an effect
 - Better than η^2 : η^2 is biased; ω^2 is less biased $\omega^2 = f(\text{ various MS measures}, \text{ various } df \text{ measures})$
 - f depends on ANOVA design (fixed, random, mixed)
- Generally ω^2 preferred over η^2
- However:
 - $-\omega^2$ not computable for within-subject, repeated-measures designs
 - Each subject sees multiple levels of independent variables
 - This describes most low-level, perceptual, psychophysical studies
 - E.g., fidelity metrics
 - Therefore η^2 still very useful

Example of using η^2

- When deciding what effects are important:
 - Consider α (e.g., α ≤ .05), and consider η ² (e.g., η ² ≥ 1%)
- In repeated-measures experiments, factorial designs can give "spurious" n-way interactions
 - Arise because large df in denominator of F ratio
 - These effects *significant*, but not *important*
- Example: 3-way interaction below is not in [Gabbard et al. 05], because of low η^2 value

Source	SS	df	MS	F	p	η^2
Distance x Background x Drawing Style	22423249	50	448465	1.5*	0.016	.83%
Within (D x B x DS x Subject)	254047337	850	298879			

Human-Centered Fidelity Metrics for Virtual Environment Simulations

Three Numbers from Standard Experimental Design and Analysis:

α, power, effect magnitude

VR 2005 Tutorial

J. Edward Swan II, Mississippi State University

References

- [Cohen 88] J Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd edition, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.
- [Devore Peck 86] J Devore, R Peck, Statistics: The Exploration and Analysis of Data, West Publishing Co., St. Paul, MN, 1986.
- [Gabbard et al. 05] JL Gabbard, JE Swan II, D Hix, RS Schulman, J Lucas, D Gupta, "An Empirical User-Based Study of Text Drawing Styles and Outdoor Background Textures for Augmented Reality", Technical Papers, IEEE Virtual Reality 2005, March 12-16, Bonn, Germany.
- [Howell 02] DC Howell, Statistical Methods for Psychology, 5th edition, Duxbury, Pacific Grove, CA, 2002.
- [Living et al. 03] MA Livingston, JE Swan II, JL Gabbard, TH Höllerer, D Hix, SJ Julier, Y Baillot, D Brown, "Resolving Multiple Occluded Layers in Augmented Reality", The 2nd International Symposium on Mixed and Augmented Reality (ISMAR '03), October 7–10, 2003, Tokyo, Japan, pages 56–65.
- [Saville Wood 91] DJ Saville, GR Wood, Statistical Methods: The Geometric Approach, Springer-Verlag, New York, NY, 1991.
- [Swan et al. 03] JE Swan II, JL Gabbard, D Hix, RS Schulman, KP Kim, "A Comparative Study of User Performance in a Map-Based Virtual Environment", Technical Papers, IEEE Virtual Reality 2003, March 22–26, Los Angeles, California: IEEE Computer Society, 2003, pages 259–266.
- [Tufte 83] ER Tufte, *The Visual Display of Quantitative Information*, Graphics Press, Cheshire, Connecticut, 1983.

Contact Information

J. Edward Swan II, Ph.D.

Associate Professor
Department of Computer Science and Engineering
swan@acm.org
(662)325-7507