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Outline
• Introduction and Motivation

• Alpha ( α ):
– The Logic of Hypothesis Testing
– Interpreting α; accepting and rejecting H0
– VR and AR examples

• Power: 
– Power and hypothesis testing
– Ways to use power
– VR and AR examples

• Effect Magnitude:
– The Logic of ANOVA
– Calculating η2 and ω2

– VR and AR examples
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Why Human Subject (HS) Experiments?
• VR and AR hardware / software more mature

• Focus of field:
– Implementing technology → using technology

• Increasingly running HS experiments:
– How do humans perceive, manipulate, cognate with 

VR, AR-mediated information?
– Measure utility of VR / AR for applications

• HS experiments at VR:
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Logical Deduction vs. Empiricism
• Logical Deduction

– Analytic solutions in closed form
– Amenable to proof techniques
– Much of computer science fits here
– Examples: 

• Computability (what can be calculated?)
• Complexity theory (how efficient is this algorithm?)

• Empirical Inquiry
– Answers questions that cannot be proved 

analytically
– Much of science falls into this area
– Antithetical to mathematics, computer science



5

Where is Empiricism Used?
• Humans are very non-analytic

• Fields that study humans:
– Psychology / social sciences
– Industrial engineering
– Ergonomics
– Business / management
– Medicine

• Fields that don’t study humans:
– Agriculture, natural sciences, etc.

• Computer Science:
– HCI
– Software engineering
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Alpha ( α )
• Introduction and Motivation

• Alpha ( α ):
– The Logic of Hypothesis Testing
– Interpreting α; accepting and rejecting H0
– VR and AR examples

• Power: 
– Power and hypothesis testing
– Ways to use power
– VR and AR examples

• Effect Magnitude:
– The Logic of ANOVA
– Calculating η2 and ω2

– VR and AR examples
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• Population: 
– Set containing every possible element that we 

want to measure
– Usually a Platonic, theoretical construct
– Mean: μ Variance: σ2 Standard deviation: σ

• Sample:
– Set containing the elements we actually 

measure (our subjects)
– Subset of related population
– Mean:     Variance: s2 Standard deviation: s

Number of samples: N

Populations and Samples

X
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Hypothesis Testing
• Goal is to infer population characteristics 

from sample characteristics

From [Howell 02], p 78

population

samples
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Testable Hypothesis
• General hypothesis: The research question 

that motivates the experiment.

• Testable hypothesis: The research 
question expressed in a way that can be 
measured and studied.

• Generating a good testable hypothesis is a 
real skill of experimental design.
– By good, we mean contributes to experimental 

validity.
– Skill best learned by studying and critiquing 

previous experiments.
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Testable Hypothesis Example
• General hypothesis: Stereo will make people more effective 

when navigating through a virtual environment (VE).

• Testable hypothesis: We measure time it takes for subjects 
to navigate through a particular VE, under conditions of 
stereo and mono viewing.  We hypothesis subjects will be 
faster under stereo viewing.

• Testable hypothesis requires a measurable quantity:
– Time, task completion counts, error counts, etc.

• Some factors effecting experimental validity:
– Is VE representative of something interesting 

(e.g., a real-world situation)?
– Is navigation task representative of something interesting?
– Is there an underlying theory of human performance that can 

help predict the results?  Could our results contribute to this 
theory?
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What Are the Possible Alternatives? 
• Let time to navigate be μs: stereo time; μm: mono time

– Perhaps there are two populations: μs – μm = d

– Perhaps there is one population: μs – μm = 0

μs μm μs μm(they could be 
close together)

(they could 
be far apart)

μs,μm
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Hypothesis Testing Procedure
1. Develop testable hypothesis H1: μs – μm = d 

– (E.g., subjects faster under stereo viewing)

2. Develop null hypothesis H0: μs – μm = 0
– Logical opposite of testable hypothesis

3. Construct sampling distribution assuming H0 is true.

4. Run an experiment and collect samples; 
yielding sampling statistic X.
– (E.g., measure subjects under stereo and mono conditions)

5. Referring to sampling distribution, calculate conditional 
probability of seeing X given H0: α = p( X | H0 ).
– If probability is low (α ≤ 0.05, α ≤ 0.01), we are unlikely to see X

when H0 is true.  We reject H0, and embrace H1.
– If probability is not low (α > 0.05), we are likely to see X when 

H0 is true.  We do not reject H0.
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Example 1: VE Navigation with Stereo Viewing
1. Hypothesis H1: μs – μm = d

– Subjects faster under stereo viewing.

2. Null hypothesis H0: μs – μm = 0
– Subjects same speed whether stereo or mono viewing.

3. Constructed sampling distribution assuming H0 is true.

4. Ran an experiment and collected samples:
– 32 subjects, collected 128 samples
– Xs = 36.431 sec; Xm = 34.449 sec; Xs – Xm = 1.983 sec

5. Calculated conditional probability of seeing 1.983 sec given 
H0: α = p( 1.983 sec | H0 ) = 0.445.
– α = 0.445 not low, we are likely to see 1.983 sec when 

H0 is true.  We do not reject H0.  
– This experiment did not tell us that subjects were faster under 

stereo viewing.
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Example 2: Effect of Intensity on AR 
Occluded Layer Perception

1. Hypothesis H1: μc – μd = d
– Tested constant and decreasing intensity.  Subjects faster 

under decreasing intensity.

2. Null hypothesis H0: μc – μd = 0
– Subjects same speed whether constant or decreasing intensity.

3. Constructed sampling distribution assuming H0 is true.

4. Ran an experiment and collected samples:
– 8 subjects, collected 1728 samples
– Xc = 2592.4 msec; Xd = 2339.9 msec; Xc – Xd =  252.5 msec

5. Calculated conditional probability of seeing 252.5 msec
given H0: α = p( 252.5 msec | H0 ) = 0.008.
– α = 0.008 is low (α ≤ 0.01); we are unlikely to see 252.5 msec

when H0 is true.  We reject H0, and embrace H1.
– This experiment suggests that subjects are faster under 

decreasing intensity.
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Some Considerations…
• The conditional probability α = p( X | H0 )

– Much of statistics involves how to calculate this probability; 
source of most of statistic’s complexity

– Logic of hypothesis testing the same regardless of how 
α = p( X | H0 ) is calculated

– If you can calculate α = p( X | H0 ), you can test a hypothesis

• The null hypothesis H0

– H0 usually in form f(μ1, μ2,…) = 0
– Gives hypothesis testing a double-negative logic:

assume H0 as the opposite of H1, then reject H0

– Philosophy is that can never prove something true, 
but can prove it false

– H1 usually in form f(μ1, μ2,…) ≠ 0; we don’t know what value it 
will take, but main interest is that it is not 0
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When We Reject H0
• Calculate α = p( X | H0 ), when do we reject H0?

– In psychology, two levels: α ≤ 0.05; α ≤ 0.01
– Other fields have different values

• What can we say when we reject H0 at α = 0.008?
– “If H0 is true, there is only an 0.008 probability of getting 

our results, and this is unlikely.”
• Correct!

– “There is only a 0.008 probability that our result is in 
error.”
• Wrong, this statement refers to p( H0 ), but that’s not what we 

calculated.

– “There is only a 0.008 probability that H0 could have been 
true in this experiment.”
• Wrong, this statement refers to p( H0 | X ), but that’s not what 

we calculated.
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When We Don’t Reject H0
• What can we say when we don’t reject H0 at 
α = 0.445?
– “We have proved that H0 is true.”
– “Our experiment indicates that H0 is true.”

• Wrong, statisticians agree that hypothesis testing cannot 
prove H0 is true.  (But see the section on Power).

• Statisticians do not agree on what failing to 
reject H0 means.
– Conservative viewpoint (Fisher): 

• We must suspend judgment, and cannot say anything about 
the truth of H0.

– Alternative viewpoint (Neyman & Pearson): 
• We “accept” H0, and act as if it’s true for now…
• But future data may cause us to change our mind

From [Howell 02], p 99
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Hypothesis Testing Outcomes

• α = p( X | H0 ), so hypothesis testing involves calculating α
• Two ways to be right:

– Find a result
– Fail to find a result and waste time running an experiment

• Two ways to be wrong:
– Type I error: we think we have a result, but we are wrong
– Type II error: a result was there, but we missed it

correct
(but wasted time)

p = 1 – α

wrong
type I error

p = α
H0 true

wrong
type II error

p = β

correct
a result!

p = 1 – β = power
H0 falseTrue 

state 
of the 
world

Don’t reject H0Reject H0

Decision
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When Do We Really Believe a Result?
• When we reject H0, we have a result, but:

– It’s possible we made a type I error
– It’s possible our finding is not reliable 

• Just an artifact of our particular experiment

• So when do we really believe a result?
– Statistical evidence

• α level: (p < .05, p < .01, p < .001)
• power, effect magnitude

– Meta-statistical evidence
• Plausible explanation of observed phenomena

– Based on theories of human behavior:
perceptual, cognitive psychology; control theory, etc.

• Repeated results
– Especially by others
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Power
• Introduction and Motivation

• Alpha ( α ):
– The Logic of Hypothesis Testing
– Interpreting α; accepting and rejecting H0
– VR and AR examples

• Power: 
– Power and hypothesis testing
– Ways to use power
– VR and AR examples

• Effect Magnitude:
– The Logic of ANOVA
– Calculating η2 and ω2

– VR and AR examples
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Interpreting α, β, and Power

• If H0 is true:
– α is probability we make a 

type I error: we think we have a 
result, but we are wrong

• If H1 is true:
– β is probability we make a 

type II error: a result was there, 
but we missed it

– Power is a more common term 
than β

wasted time
p = 1 – α

type I error
p = αH0 true

type II error
p = β

a result!
p = 1 – β = powerH0 falseTrue 

state 
of the 
world

Don’t reject H0Reject H0

Decision

α
μ1μ0

H0 H1

β

power =
1 – β
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Increasing Power by Increasing α

• Illustrates α / power
tradeoff

• Increasing α:
– Increases power
– Decreases type II error
– Increases type I error

• Decreasing α:
– Decreases power
– Increases type II error
– Decreases type I error

α
μ1μ0

H0 H1

β

power

αβ

power

μ1μ0

H0 H1
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Increasing Power by Measuring 
a Bigger Effect

• If the effect size is 
large:
– Power increases
– Type II error

decreases
– α and type I error stay 

the same

• Unsurprisingly, large 
effects are easier to 
detect than small 
effects

α
μ1μ0

H0 H1

β

power

α
μ1μ0

β

power

H0 H1
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Increasing Power by 
Collecting More Data

• Increasing sample size (N):
– Decreases variance
– Increases power
– Decreases type II error
– α and type I error stay the 

same
• There are techniques that 

give the value of N required 
for a certain power level.

• Here, effect size remains the same, 
but variance drops by half.

α
μ1μ0

H0 H1

β

power

H0 H1

α
μ1μ0

β

power
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Power and VR / AR Fidelity Metrics
• Need α, effect size, and sample size for power: 

power = f( α, |μ0 – μ1|, N )

• Problem for VR / AR: 
– Effect size |μ0 – μ1| hard to know in our field

• Population parameters estimated from prior studies
• But our field is so new, not many prior studies

– Can find effect sizes in more mature fields 

• Post-hoc power analysis:
effect size = |X0 – X1|

– Estimate from sample statistics
– But this makes statisticians grumble 

(e.g. [Howell 02] [Cohen 88])
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Other Uses for Power
1. Number samples needed for certain power level:

N = f( power, α, |μ0 – μ1| or |X0 – X1| )
– Number extra samples needed for more powerful result
– Gives “rational basis” for deciding N [Cohen 88]

2. Effect size that will be detectable:
|μ0 – μ1| = f( N, power, α )

3. Significance level needed:
α = f( |μ0 – μ1| or |X0 – X1|, N, power )

(1) is the most common power usage
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Arguing the Null Hypothesis
• Cannot directly argue H0: μs – μm = 0.  But 

we can argue that |μ0 – μ1| < d.
– Thus, we have bound our effect size by d.  
– If d is small, effectively argued null hypothesis.

From [Cohen 88], p 16 

α
μ1μ0

H0 H1

β

power =
1 – β
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Example of Arguing H0
• We know GP is effective depth cue, 

but can we get close with other graphical cues?  
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mean error*intensityopacitydrawing styleground plane

• Our effect size is d = .087 standard deviations
power( α = .05, d = .087, N = 265 ) = .17

• Not very powerful.  Where can our experiment bound d?
d( N = 265, power = .95, α = .05 ) = .31 standard deviations

• This bound is significant at α = .05, β = .05, using same logic as 
hypothesis testing.  
But how meaningful is d < .31?  Other significant d’s:

.37,   .12,   .093,   .19

• Not very meaningful.  If we ran an experiment to bound 
d < .1, how much data would we need?

N( power = .95, α = .05, d = .1 ) = 2600

• Original study collected N = 3456, so N = 2600 reasonable

*F(1,1870) = 1.002, p = .317
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Effect Magnitude
• Introduction and Motivation

• Alpha ( α ):
– The Logic of Hypothesis Testing
– Interpreting α; accepting and rejecting H0
– VR and AR examples

• Power: 
– Power and hypothesis testing
– Ways to use power
– VR and AR examples

• Effect Magnitude:
– The Logic of ANOVA
– Calculating η2 and ω2

– VR and AR examples
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ANOVA: Analysis of Variance
• t-test used for comparing two means 

– (2 x 1 designs)

• ANOVA used for factorial designs
– Comparing multiple levels (n x 1 designs)
– Comparing multiple independent variables 

(n x m, n x m x p), etc.
– Can also compare two levels (2 x 1 designs);

ANOVA can be considered a generalization of a t-test

• No limit to experimental design size or complexity

• Most widely used statistical test in psychological 
research

• ANOVA based on the F Distribution; 
also called an F-Test
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How ANOVA Works

• Null hypothesis H0: μ1 = μ2 = μ3 = μ4; H1: at least one mean differs
• Estimate variance between each group: MSbetween

– Based on the difference between group means
– If H0 is true, accurate estimation
– If H0 is false, biased estimation: overestimates variance

• Estimate variance within each group: MSwithin
– Treats each group separately
– Accurate estimation whether H0 is true or false

• Calculate F critical value from ratio: F = MSbetween / MSwithin
– If F ≈ 1, then accept H0

– If F >> 1, then reject H0

H0 likely
true

H0 likely
false
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ANOVA Example
• Hypothesis H1: 

–Platform (Workbench, Desktop, Cave, or 
Wall) will affect user navigation time in 
a virtual environment.

• Null hypothesis H0: μb = μd = μc = μw.
–Platform will have no effect on user 

navigation time.
• Ran 32 subjects, each subject used 

each platform, collected 128 data 
points.

• Reporting in a paper: F( 3, 93 ) = 3.1, p < .05
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*p < .05
129.66779312059.0950Within (P x S)

0.0313.100*401.962531205.8876Between (platform)
pFMSdfSSSource

Data from [Swan et al. 03], calculations shown in [Howell 02], p 471 
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Measures of Effect Magnitude
• Hypothesis Testing with ANOVA gives us:

– α: measures effect significance

• From ANOVA table, can calculate measures of 
effect magnitude
– Related to effect size d from power analysis

• Many calls for reporting effect magnitude in 
addition to α:
– Current statistics textbooks
– American Psychological Association
– Many journals and other venues

• Related to considering / controlling both:
– Probability of type I error ( α )
– Probability of type II error ( β )
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Calculating η2

• η2 (eta-squared): 
– Percentage of variance accounted for by an effect
– Ratio of SSbetween / SSwithin :

129.66779312059.0950Within (P x S)
0.0313.100*401.962531205.8876Between (platform)

pFMSdfSSSource

• η2 = .100
– Platform accounts for 10% of observed variance

• Calculate by putting ANOVA table in spreadsheet
– η2 not given by Minitab
– η2 not given by SPSS (but it gives partial- η2 and calls it η2!)

Data from [Swan et al. 03]
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Calculating ω2

• ω2 (omega-squared): 
– Percentage of variance accounted for by an effect
– Better than η2: η2 is biased; ω2 is less biased

ω2 = f( various MS measures, various df measures )

– f depends on ANOVA design (fixed, random, mixed)

• Generally ω2 preferred over η2

• However:
– ω2 not computable for within-subject, repeated-measures 

designs
• Each subject sees multiple levels of independent variables 

– This describes most low-level, perceptual, psychophysical 
studies
• E.g., fidelity metrics

– Therefore η2 still very useful

From [Howell 02], p 446
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Example of using η2

• When deciding what effects are important:
– Consider α (e.g., α ≤ .05), and consider η2 (e.g., η2 ≥ 1%)

• In repeated-measures experiments, factorial designs can 
give “spurious” n-way interactions 
– Arise because large df in denominator of F ratio
– These effects significant, but not important

• Example: 3-way interaction below is not in 
[Gabbard et al. 05], because of low η2 value

Data from [Gabbard et al. 05]

0.016

p

298879850254047337Within (D x B x DS x Subject)

.83%1.5*4484655022423249Distance x Background x 
Drawing Style

η2FMSdfSSSource
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