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Why Human Subject (HS) Experiments?

* VR and AR hardware / software more mature

* Focus of field:
— Implementing technology — using technology

 Increasingly running HS experiments:

— How do humans perceive, manipulate, cognate with
VR, AR-mediated information?

— Measure utility of VR / AR for applications

 HS experiments at VR:

VRyear papers % sketches % posters %
2003 10/29 | 35% 5/14 | 36%

2004 9/26 | 35% 5123 | 22%
2005 13/29 | 45% 1/8 13% | 87115 | 53%




Logical Deduction vs. Empiricism

* Logical Deduction
— Analytic solutions in closed form
— Amenable to proof techniques
—Much of computer science fits here

— Examples:
 Computability (what can be calculated?)
« Complexity theory (how efficient is this algorithm?)

 Empirical Inquiry
— Answers questions that cannot be proved
analytically
—Much of science falls into this area

— Antithetical to mathematics, computer science



Where is Empiricism Used?

« Humans are very non-analytic

* Fields that study humans:
— Psychology / social sciences
— Industrial engineering
— Ergonomics
— Business / management
— Medicine

* Fields that don’t study humans:
— Agriculture, natural sciences, etc.

« Computer Science:
— HCI
— Software engineering
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« Effect Magnitude:
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— VR and AR examples



Populations and Samples

 Population:

— Set containing every possible element that we
want to measure

— Usually a Platonic, theoretical construct
—Mean: y Variance: 0% Standard deviation: o

« Sample:

— Set containing the elements we actually
measure (our subjects)

—Subset of related population

—Mean: X Variance: s2 Standard deviation: s
Number of samples: N



Hypothesis Testing

* Goal is to infer population characteristics
from sample characteristics
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Testable Hypothesis

* General hypothesis: The research question
that motivates the experiment.

* Testable hypothesis: The research
question expressed In a way that can be
measured and studied.

 Generating a good testable hypothesis is a
real skill of experimental design.
— By good, we mean contributes to experimental
validity.
— Skill best learned by studying and critiquing
previous experiments.



Testable Hypothesis Example

General hypothesis: Stereo will make people more effective
when navigating through a virtual environment (VE).

Testable hypothesis: We measure time it takes for subjects
to navigate through a particular VE, under conditions of
stereo and mono viewing. We hypothesis subjects will be
faster under stereo viewing.

Testable hypothesis requires a measurable quantity:
— Time, task completion counts, error counts, etc.

Some factors effecting experimental validity:

— Is VE representative of something interesting
(e.g., a real-world situation)?

— Is navigation task representative of something interesting?

— Is there an underlying theory of human performance that can
help predict the results? Could our results contribute to this
theory? 10



What Are the Possible Alternatives?

- Let time to navigate be p_: stereo time; y_: mono time
— Perhaps there are two populations: y, -y =d

Ms My (they could be s My (they could
close together) be far apart)

— Perhaps there is one population: y, -y, =0

Ms;M, 11



Hypothesis Testing Procedure

1. Develop testable hypothesis H,: y. -y =d
— (E.g., subjects faster under stereo viewing)

2. Develop null hypothesis H,: y.— ., =0
— Logical opposite of testable hypothesis

3. Construct sampling distribution assuming H, is true.

4. Run an experiment and collect samples;
yielding sampling statistic X.
— (E.g., measure subjects under stereo and mono conditions)

5. Referring to sampling distribution, calculate conditional
probability of seeing X given H,: a= p( X | H,).
— If probability is low (a < 0.05, a < 0.01), we are unlikely to see X
when H, is true. We reject H,, and embrace H,.

— If probability is not low (a > 0.05), we are likely to see X when
H, is true. We do not reject H,,.

12



Data from [Swan et al. 03]

Example 1: VE Navigation with Stereo Viewing

1. Hypothesis H;: y.—u_ =d
— Subjects faster under stereo viewing.

2. Null hypothesis H,: uy.—p.. =0
— Subjects same speed whether stereo or mono viewing.

3. Constructed sampling distribution assuming H, is true.

4. Ran an experiment and collected samples:

— 32 subjects, collected 128 samples
— X, =36.431 sec; X, = 34.449 sec; X, — X, =1.983 sec

5. Calculated conditional probability of seeing 1.983 sec given
H,: a=p(1.983 sec | H,) = 0.445.
— a = 0.445 not low, we are likely to see 1.983 sec when
H, is true. We do not reject H,,.

— This experiment did not tell us that subjects were faster under
stereo viewing.

13



Data from [Living et al. 03]

Example 2: Effect of Intensity on AR
Occluded Layer Perception

. Hypothesis H,: y.—pu,=d

— Tested constant and decreasing intensity. Subjects faster
under decreasing intensity.

. Null hypothesis H,: y.—u,=0

— Subjects same speed whether constant or decreasing intensity.

. Constructed sampling distribution assuming H, is true.

. Ran an experiment and collected samples:

— 8 subjects, collected 1728 samples
— X, =2392.4 msec; X, =2339.9 msec; X_—- X, = 252.5 msec

. Calculated conditional probability of seeing 252.5 msec

given H,: a = p( 252.5 msec | H,) = 0.008.

—a=0.008 is low (a = 0.01); we are unlikely to see 252.5 msec
when H, is true. We reject H,, and embrace H,.

— This experiment suggests that subjects are faster under
decreasing intensity.

14



Some Considerations...

* The conditional probability a= p( X | H,)
— Much of statistics involves how to calculate this probability;
source of most of statistic’s complexity

— Logic of hypothesis testing the same regardless of how
a=p(X|H,)is calculated

— If you can calculate a = p( X'| H, ), you can test a hypothesis

e The null hypothesis H,
— H, usually in form f(u,, y,,...) =0

— Gives hypothesis testing a double-negative logic:
assume H, as the opposite of H,, then reject H,

— Philosophy is that can never prove something true,
but can prove it false

— H, usually in form f(u,, y,,...) # 0; we don’t know what value it
will take, but main interest is that it is not 0

15



When We Reject H,

 Calculate a = p( X | H,), when do we reject H,?
— In psychology, two levels: a < 0.05; a < 0.01
— Other fields have different values

« What can we say when we reject H, at a = 0.008?

— “If H, is true, there is only an 0.008 probability of getting
our results, and this is unlikely.”

e Correct!

— “There is only a 0.008 probability that our result is in
error.”

* Wrong, this statement refers to p( H, ), but that’s not what we
calculated.

— “There is only a 0.008 probability that H, could have been
true in this experiment.”

« Wrong, this statement refers to p( H,| X'), but that’s not what
we calculated.

16



When We Don’t Reject H,

« What can we say when we don’t reject H, at
a = 0.4457
— “We have proved that H, is true.”

— “Our experiment indicates that H, is true.”

* Wrong, statisticians agree that hypothesis testing cannot
prove H, is true. (But see the section on Power).

« Statisticians do not agree on what failing to
reject H, means.

— Conservative viewpoint (Fisher):

 We must suspend judgment, and cannot say anything about
the truth of H,,.

— Alternative viewpoint (Neyman & Pearson):
« We “accept” H,, and act as if it’s true for now...
« But future data may cause us to change our mind

From [Howell 02], p 99
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Hypothesis Testing Outcomes

Reject H, Don’t reject H,
correct wrong
H, false a result! type Il error
p=1-B=power pP=p
wrong correct
H, true type | error (but wasted time)
p=a p=1-a

« a=p(X| H,), so hypothesis testing involves calculating a

 Two ways to be right:
— Find a result
— Fail to find a result and waste time running an experiment
« Two ways to be wrong:
— Type | error: we think we have a result, but we are wrong
— Type Il error: a result was there, but we missed it 18



When Do We Really Believe a Result?

 When we reject H,, we have a result, but:
—It’s possible we made a type | error

—It’s possible our finding is not reliable
« Just an artifact of our particular experiment

« So when do we really believe a result?

— Statistical evidence

o alevel: (p<.05, p<.01, p<.001)
* power, effect magnitude

— Meta-statistical evidence

* Plausible explanation of observed phenomena

— Based on theories of human behavior:
perceptual, cognitive psychology; control theory, etc.

 Repeated results
— Especially by others

19



Power
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Interpreting a, 8, and Power

Reject H, Don’t reject H,
a result! type Il error
H, false p=1-B = power p=p
H. t type | error wasted time
o true p=a p=1-a
« If H, is true: H, H,
— ais probability we make a
type | error: we think we have a power =
result, but we are wrong 1-8
o If H, is true:
— B is probability we make a
type Il error: a result was there,
but we missed it B
— Power is a more common term Mo M

than B8



Increasing Power by Increasing a

H, H,

* lllustrates a/ power
tradeoff

 Increasing a:
— Increases power
— Decreases type Il error
— Increases type | error

 Decreasing a: power
— Decreases power
— Increases type Il error
— Decreases type | error B

My M4

22



Increasing Power by Measuring
a Bigger Effect

e If the effect size is
large:
— Power increases

— Type Il error
decreases

— a and type | error stay
the same

H,

H,

 Unsurprisingly, large
effects are easier to
detect than small
effects

-

M,

power
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Increasing Power by
Collecting More Data

H, H, H, H,

B

power

Ho Hy
* Increasing sample size (N):
— Decreases variance
— Increases power
— Decreases type Il error
— a and type | error stay the

same J B

 There are techniques that My M4

give the va_lue of N required e Here, effect size remains the same,
for a certain power level. but variance drops by half.

24



Power and VR / AR Fidelity Metrics

* Need a, effect size, and sample size for power:
power = f{ a, |1, — k|, N)

e Problem for VR / AR:

— Effect size |y, — y,| hard to know in our field
* Population parameters estimated from prior studies
« But our field is so new, not many prior studies

— Can find effect sizes in more mature fields

 Post-hoc power analysis:
effect size = | X, — X]
— Estimate from sample statistics

— But this makes statisticians grumble
(e.g. [Howell 02] [Cohen 88])

25



Other Uses for Power

1. Number samples needed for certain power level:
N = f( power, a, |u, — py| or | X, — Xi|)

— Number extra samples needed for more powerful result
— Gives “rational basis” for deciding N [Cohen 88]

2. Effect size that will be detectable:
| — k4] = A N, power, a)

3. Significance level needed:
a = f{ |y — | or [X; — Xi|, N, power )

(1) is the most common power usage

26



Arguing the Null Hypothesis

« Cannot directly argue H,: py. — ., = 0. But
we can argue that |y, — 4| < d.
—Thus, we have bound our effect size by d.

—If d is small, effectively argued null hypothesis.

From [Cohen 88], p 16
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Data from [Living et al. 03]

Example of Arguing H,

« We know GP is effective depth cue,
but can we get close with other graphical cues?

ground plane drawing style opacity intensity mean error*
on all levels both levels both levels 0.144
off wire+fill decreasing decreasing 0.111

*F(1,1870) =1.002, p = .317
Our effect size is d = .087 standard deviations

power( a=.05,d=.087, N=265) = .17

* Not very powerful. Where can our experiment bound d?
d( N = 265, power = .95, a=.05) = .31 standard deviations

 This bound is significant at a = .05, 8 = .05, using same logic as
hypothesis testing.
But how meaningful is d <.31? Other significant d’s:

37, 12, .093, .19

* Not very meaningful. If we ran an experiment to bound
d < .1, how much data would we need?

N( power = .95, a=.05,d=.1) =2600

» Original study collected N = 3456, so N = 2600 reasonable 28



Effect Magnitude

e Introduction and Motivation

 Alpha ( a):
— The Logic of Hypothesis Testing
— Interpreting a; accepting and rejecting H,
— VR and AR examples

 Power:
— Power and hypothesis testing
— Ways to use power
— VR and AR examples

« Effect Magnitude:
— The Logic of ANOVA
— Calculating n? and w?
— VR and AR examples
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ANOVA: Analysis of Variance

* t-test used for comparing two means
— (2 x 1 designs)

« ANOVA used for factorial designs
— Comparing multiple levels (n x 1 designs)

— Comparing multiple independent variables
(n x m, n x m x p), etc.

— Can also compare two levels (2 x 1 designs);
ANOVA can be considered a generalization of a t-test

* No limit to experimental design size or complexity

 Most widely used statistical test in psychological
research

« ANOVA based on the F Distribution;
also called an F-Test

30



How ANOVA Works

H, likely H, likely
true false

—

Null hypothesis H,: y, = u, = u; = y,; H,: at least one mean differs
Estimate variance between each group: MS, . ccn,
— Based on the difference between group means
— If H, is true, accurate estimation
— If H, is false, biased estimation: overestimates variance
Estimate variance within each group: MS
— Treats each group separately
— Accurate estimation whether H, is true or false
Calculate F critical value from ratio: F=MS, .., / MS
— If F=1, then accept H,
— If F>>1, then reject H,

within

within

31



* Hypothesis H,:
—Platform (Workbench, Desktop, Cave, or

Wall) will affect user navigation time in
a virtual environment.

* Null hypothesis H,: u, = u, = .= M,

—Platform will have no effect on user
navigation time.

 Ran 32 subjects, each subject used
each platform, collected 128 data

55

Time (seconds)
N N w w H H [3)]
o (3, ] o (3, ] o (3, o

ANOVA Example

+ 95% Confidence Intervals

Workbench

Desktop Cave

points. Wall
Platform
Source SS df MS F
Between (platform) 1205.8876 3 401.9625 3.100* | 0.031
Within (P x S) 12059.0950 | 93 129.6677
*p <.05

* Reporting in a paper: F(3,93)=3.1,p<.05

Data from [Swan et al. 03], calculations shown in [Howell 02], p 471
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Measures of Effect Magnitude
 Hypothesis Testing with ANOVA gives us:

— a: measures effect significance

* From ANOVA table, can calculate measures of
effect magnitude

— Related to effect size d from power analysis

 Many calls for reporting effect magnitude in
addition to a:
— Current statistics textbooks
— American Psychological Association
— Many journals and other venues

* Related to considering / controlling both:
— Probability of type | error ( a)
— Probability of type Il error ( 8)

33



Calculating n?

* n? (eta-squared):
— Percentage of variance accounted for by an effect

Source SS df MS F p
Between (platform) 1205.8876 3 401.9625 3.100* | 0.031
Within (P x S) 12059.0950 | 93 129.6677

* n?=.100

— Platform accounts for 10% of observed variance

« Calculate by putting ANOVA table in spreadsheet
— n? not given by Minitab

— n? not given by SPSS (but it gives partial- n?> and calls it n?!)

Data from [Swan et al. 03]
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Calculating w?

¢ w? (omega-squared):
— Percentage of variance accounted for by an effect

— Better than n?: n? is biased; w?is less biased
w? = f( various MS measures, various df measures )

— fdepends on ANOVA design (fixed, random, mixed)
* Generally w? preferred over n?

e However:

— w? not computable for within-subject, repeated-measures
designs

« Each subject sees multiple levels of independent variables

— This describes most low-level, perceptual, psychophysical
studies

 E.g., fidelity metrics

— Therefore n? still very useful

From [Howell 02], p 446
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Example of using n?

« When deciding what effects are important:
— Consider a (e.g., a = .05), and consider n? (e.g., n? 2 1%)

* In repeated-measures experiments, factorial designs can
give “spurious” n-way interactions
— Arise because large df in denominator of F ratio
— These effects significant, but not important

« Example: 3-way interaction below is not in
[Gabbard et al. 05], because of low n? value

Source SS df MS

Distance x Background x

: 22423249 | 50 | 448465 | 1.5* | 0.016
Drawing Style

.83%

Within (D x B x DS x Subject) | 254047337 | 850 | 298879

Data from [Gabbard et al. 05]
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