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Schedule

DovClassical and Other Psychophysical Methods 
for Virtual Environments1.0 hours11:00 AM

SteveHuman Performance and Preference Studies: 
Exhortations and Illustrations1.5 hours1:30 PM

AllGroup Design Exercise and Discussion2.0 hours3:30 PM

Coffee Break0.5 hours3:00 PM

DovClassical and Other Psychophysical Methods 
for Virtual Environments0.5 hours1:00 PM

Lunch Break1.0 hours12:00 PM

EdBasic Experimental Design and Analysis 0.5 hours10:30 AM

Coffee Break0.5 hours10:00 AM

EdBasic Experimental Design and Analysis2.0 hours8:00 AM
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Motivation and Goals
• Studying experimental design and analysis at 

Mississippi State University:
– PSY 3103 Introduction to Psychological Statistics
– PSY 3314 Experimental Psychology
– PSY 6103 Psychometrics
– PSY 8214 Quantitative Methods In Psychology II
– PSY 8803 Advanced Quantitative Methods
– IE 6613 Engineering Statistics I
– IE 6623 Engineering Statistics II
– ST 8114 Statistical Methods
– ST 8214 Design & Analysis Of Experiments
– ST 8853 Advanced Design of Experiments I
– ST 8863 Advanced Design of Experiments II

• 7 undergrad hours; 30 grad hours; 3 departments!

• Course attendee backgrounds?
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Motivation and Goals
• What can we accomplish in one day?

• Study subset of basic techniques 
– Presenters have found these to be the most 

applicable to VR, AR systems

• Focus on intuition behind basic techniques

• Become familiar with basic 
concepts and terms
– Facilitate working with collaborators from 

psychology, industrial engineering, statistics, etc.
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Outline
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Why Human Subject (HS) Experiments?
• VR and AR hardware / software more mature

• Focus of field:
– Implementing technology → using technology

• Increasingly running HS experiments:
– How do humans perceive, manipulate, cognate with 

VR, AR-mediated information?
– Measure utility of VR / AR for applications

• HS experiments at VR:

2006
13%

%

8 / 15
5 / 23
5 / 14

posters

53%1 / 845%13 / 292005
22%35%9 / 262004
36%35%10 / 292003

%sketches%papersVR year
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Logical Deduction vs. Empiricism
• Logical Deduction

– Analytic solutions in closed form
– Amenable to proof techniques
– Much of computer science fits here
– Examples: 

• Computability (what can be calculated?)
• Complexity theory (how efficient is this algorithm?)

• Empirical Inquiry
– Answers questions that cannot be proved 

analytically
– Much of science falls into this area
– Antithetical to mathematics, computer science
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What is Empiricism?
• The Empirical Technique

– Develop a hypothesis, perhaps based on a theory
– Make the hypothesis testable
– Develop an empirical experiment
– Collect and analyze data
– Accept or refute the hypothesis
– Relate the results back to the theory
– If worthy, communicate the results to your community

• Statistics: 
– Foundation for empirical work; necessary but not 

sufficient
– Often not useful for managing problems of gathering, 

interpreting, and communicating empirical information.
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Where is Empiricism Used?
• Humans are very non-analytic
• Fields that study humans:

– Psychology / social sciences
– Industrial engineering
– Ergonomics
– Business / management
– Medicine

• Fields that don’t study humans:
– Agriculture, natural sciences, etc.

• Computer Science:
– HCI
– Software engineering
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Experimental Validity
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Designing Valid Empirical Experiments
• Experimental Validity

– Does experiment really measure what we want it 
to measure?

– Do our results really mean what we think 
(and hope) they mean?

– Are our results reliable?
• If we run the experiment again, will we get the same 

results?  
• Will others get the same results?

• Validity is a large topic in empirical inquiry
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Experimental Variables
• Independent Variables

– What the experiment is studying
– Occur at different levels

• Example: stereopsis, at the levels of stereo, mono
– Systematically varied by experiment

• Dependent Variables
– What the experiment measures
– Assume dependent variables will be effected by 

independent variables
– Must be measurable quantities

• Time, task completion counts, error counts, 
survey answers, scores, etc.

• Example: VR navigation performance, in total time
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Experimental Variables 
• Independent variables can vary in two ways

– Between-subjects: each subject sees a different level of 
the variable
• Example: ½ of subjects see stereo, ½ see mono

– Within-subjects: each subject sees all levels of the 
variable
• Example: each subject sees both stereo and mono

• Confounding factors (or confounding variables)
– Factors that are not being studied, but will still affect 

experiment
• Example: stereo condition less bright than mono condition

– Important to predict and control confounding factors, or 
experimental validity will suffer
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Experimental Design
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Experimental Designs

• Important confounding factors for within subject variables:
– Learning effects
– Fatigue effects

• Control these by counterbalancing the design
– Ensure no systematic variation between levels and the order 

they are presented to subjects

• 2 x 1 is simplest possible design, with one independent 
variable at two levels:

level 2

level 1

Variable

mono

stereo

Stereopsis

mono

stereo

1st condition

2, 4, 6, 8

1, 3, 5, 7

Subjects

stereo

mono

2nd condition



17

Factorial Designs
• n x 1 designs generalize the number of levels:

• Factorial designs generalize number of independent variables 
and the number of levels of each variable

• Examples: n x m design, n x m x p design, etc. 
• Must watch for factorial explosion of design size!

mountainous
hilly
flat

VE terrain type

Stereopsis3 x 2 design:
monostereo

mountainous
hilly
flat

VE terrain type
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Cells and Levels
• Cell: each combination of levels
• Repetitions: typically, the combination of levels at 

each cell is repeated a number of times

• Example of how this design might be described:
– “A 3 (VE terrain type) by 2 (stereopsis) within-subjects 

design, with 4 repetitions of each cell.”
– This means each subject would see 3 x 2 x 4 = 24 total 

conditions
– The presentation order would be counterbalanced

Stereopsis

monostereo

mountainous
hilly
flat

VE terrain type cell
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Counterbalancing
• Addresses time-based confounding factors:

– Within-subjects variables: control learning and fatigue effects
– Between-subjects variables: control calibration drift, weather, 

other factors that vary with time

• There are two counterbalancing methods:
– Random permutations
– Systematic variation

• Latin squares are a very useful and popular technique

• Latin square properties:
– Every level appears in 

every position the same 
number of times

– Every level is followed by 
every other level

– Every level is preceded 
by every other level

⎥
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Counterbalancing Example
• “A 3 (VE terrain type) by 2 (stereopsis) within-

subjects design, with 4 repetitions of each cell.”
• Form Cartesian product of Latin squares 

{6 x 3} (VE Terrain Type) ⊗ {2 x 2} (Stereopsis)
• Perfectly counterbalances groups of 12 subjects

3A, 3B, 1A, 1B, 2A, 2B5
3B, 3A, 1B, 1A, 2B, 2A6

2B, 2A, 3B, 3A, 1B, 1A4
2A, 2B, 3A, 3B, 1A, 1B3

3B, 3A, 2B, 2A, 1B, 1A12
3A, 3B, 2A, 2B, 1A, 1B11
2B, 2A, 1B, 1A, 3B, 3A10
2A, 2B, 1A, 1B, 3A, 3B9
1B, 1A, 3B, 3A, 2B, 2A8
1A, 1B, 3A, 3B, 2A, 2B

1B, 1A, 2B, 2A, 3B, 3A
1A, 1B, 2A, 2B, 3A, 3B

Presentation Order

7
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Experimental Design Example #1

• All variables within-subject
From [Living et al. 03]



22

Experimental Design Example #2

• Mixed design: some variables between-subject, 
others within-subject.

C
om

puter Platform

offonStereo Viewing

B
etw

een Subject

positionratepositionrateControl Movement

W
ithin Subject

subjects  17 –
20

ego

subjects  21 –
24

exo

subjects  13 –
16

exo

subjects  25 –
28

ego

desktop

workbench

wall

subjects  29 –
32

subjects  9 –
12

subjects  5 –
8

subjects  1 –
4

cave

exoegoexoegoFrame of 
Reference

From [Swan et al. 03]
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Gathering Data
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Gathering Data
• Some unique aspects of VR and AR

– Can capture, log, and analyze tracker trajectory
– If we log head / hand trajectory so we can play it back, 

must have way of logging critical incidents
– VR / AR equipment more fragile than other UI setups

– In a CAVE:
• Observing a subject can break their presence / immersion
• Determining button presses when experimenter cannot see 

wand

– In AR, very difficult to know what user is seeing
• Can mount separate display near user or on their back 
• Could mount lightweight camera on user’s head

• Measurable phenomena: 
– Button presses, physical actions, answers
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Graphing Data
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Types of Statistics
• Descriptive Statistics

– Describe and explore data
– Summary statistics: 

many numbers → few numbers
– All types of graphs and visual representations
– Data analysis begins with descriptive stats

• Understand data distribution
• Test assumptions of significance tests

• Inferential Statistics
– Detect relationships in data
– Significance tests
– Infer population characteristics from sample 

characteristics
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Exploring Data with Graphs
• Histogram common data overview method

Fr
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 [H
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2]
 p

 2
1

mode = 62median = 59.5 mean = 60.26 
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Classifying Data with Histograms

From [Howell 02] p 28
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Stem-and-Leaf: 
Histogram From Actual Data
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Stem-and-Leaf: 
Histogram From Actual Data

Grades from my Autumn 2005 analysis of algorithms class

Final Recorded Grades
1 3% F 0 0
0 0% F 1
0 0% F 2
0 0% F 3
0 0% F 4
0 0% F 5
5 16% D 6 34788
8 26% C 7 12233469
8 26% B 8 01244699
9 29% A 9 001123346

31
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Boxplot

• Emphasizes variation and relationship to mean
• Because narrow, can be used to display side-by-

side groups

Data from [Swan et al. 06]
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Example Histogram and Boxplot from Real Data

mean = 2355

min value

median = 1453

25th 75th upper fence max values (outliers)

Data from 
[Living et al. 03]
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We Have Only Scratched the Surface…
• There are a vary large number of graphing techniques
• Tufte’s [83, 90] works are classic, and stat books show many 

more examples (e.g. Howell [03]).

From [Tufte 83], p 134, 62Lots of good examples…
And plenty of bad examples!
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Descriptive Statistics
• Empiricism
• Experimental Validity
• Usability Engineering
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Summary Statistics
• Many numbers → few numbers

• Measures of central tendency:
– Mean: average
– Median: middle data value
– Mode: most common data value

• Measures of variability / dispersion:
– Mean absolute deviation
– Variance
– Standard Deviation
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• Population: 
– Set containing every possible element that we 

want to measure
– Usually a Platonic, theoretical construct
– Mean: μ Variance: σ2 Standard deviation: σ

• Sample:
– Set containing the elements we actually 

measure (our subjects)
– Subset of related population
– Mean:     Variance: s2 Standard deviation: s

Number of samples: N

Populations and Samples

X



37

Measuring Variability / Dispersion

• Standard deviation uses same units as 
samples and mean.

• Calculation of population variance σ2 is 
theoretical, because μ almost never 
known and the population size N would 
be very large (perhaps infinity).

N

XX∑ −
=m.a.d.

Mean absolute deviation:

( )
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2

2

−
−
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XX
s

Variance:

( )
1

2

−
−

= ∑
N

XX
s

Standard deviation:

Mean:

N
X

X ∑=

( )
N

X∑ −
=

2
2 μ

σ
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Sums of Squares, Degrees of Freedom,
Mean Squares

• Very common terms and concepts

• Sums of squares: 
– Summed squared deviations from mean

• Degrees of freedom: 
– Given a set of N observations used in a calculation, how 

many numbers in the set may vary
– Equal to N minus number of means calculated

• Mean squares:
– Sums of squares divided by degrees of freedom
– Another term for variance, used in ANOVA

( )
squares)(mean  MS

freedom of degrees
squares of sumsSS

1

2

2 ===
−
−

= ∑
dfN

XX
s
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Hypothesis Testing
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Hypothesis Testing
• Goal is to infer population characteristics 

from sample characteristics

From [Howell 02], p 78

population

samples
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Testable Hypothesis
• General hypothesis: The research question 

that motivates the experiment.

• Testable hypothesis: The research 
question expressed in a way that can be 
measured and studied.

• Generating a good testable hypothesis is a 
real skill of experimental design.
– By good, we mean contributes to experimental 

validity.
– Skill best learned by studying and critiquing 

previous experiments.
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Testable Hypothesis Example
• General hypothesis: Stereo will make people more effective 

when navigating through a virtual environment (VE).

• Testable hypothesis: We measure time it takes for subjects 
to navigate through a particular VE, under conditions of 
stereo and mono viewing.  We hypothesis subjects will be 
faster under stereo viewing.

• Testable hypothesis requires a measurable quantity:
– Time, task completion counts, error counts, etc.

• Some factors effecting experimental validity:
– Is VE representative of something interesting 

(e.g., a real-world situation)?
– Is navigation task representative of something interesting?
– Is there an underlying theory of human performance that can 

help predict the results?  Could our results contribute to this 
theory?
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What Are the Possible Alternatives? 
• Let time to navigate be μs: stereo time; μm: mono time

– Perhaps there are two populations: μs – μm = d

– Perhaps there is one population: μs – μm = 0

μs μm μs μm(they could be 
close together)

(they could 
be far apart)

μs,μm
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Hypothesis Testing Procedure
1. Develop testable hypothesis H1: μs – μm = d 

– (E.g., subjects faster under stereo viewing)

2. Develop null hypothesis H0: μs – μm = 0
– Logical opposite of testable hypothesis

3. Construct sampling distribution assuming H0 is true.

4. Run an experiment and collect samples; yielding sampling 
statistic X.
– (E.g., measure subjects under stereo and mono conditions)

5. Referring to sampling distribution, calculate conditional 
probability of seeing X given H0: p( X | H0 ).
– If probability is low (p ≤ 0.05, p ≤ 0.01), we are unlikely to see X

when H0 is true.  We reject H0, and embrace H1.
– If probability is not low (p > 0.05), we are likely to see X when 

H0 is true.  We do not reject H0.
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Example 1: VE Navigation with Stereo Viewing
1. Hypothesis H1: μs – μm = d

– Subjects faster under stereo viewing.

2. Null hypothesis H0: μs – μm = 0
– Subjects same speed whether stereo or mono viewing.

3. Constructed sampling distribution assuming H0 is true.

4. Ran an experiment and collected samples:
– 32 subjects, collected 128 samples
– Xs = 36.431 sec; Xm = 34.449 sec; Xs – Xm = 1.983 sec

5. Calculated conditional probability of seeing 1.983 sec given 
H0: p( 1.983 sec | H0 ) = 0.445.
– p = 0.445 not low, we are likely to see 1.983 sec when H0 is 

true.  We do not reject H0.  
– This experiment did not tell us that subjects were faster under 

stereo viewing.
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Example 2: Effect of Intensity on AR 
Occluded Layer Perception

1. Hypothesis H1: μc – μd = d
– Tested constant and decreasing intensity.  Subjects faster 

under decreasing intensity.

2. Null hypothesis H0: μc – μd = 0
– Subjects same speed whether constant or decreasing intensity.

3. Constructed sampling distribution assuming H0 is true.

4. Ran an experiment and collected samples:
– 8 subjects, collected 1728 samples
– Xc = 2592.4 msec; Xd = 2339.9 msec; Xc – Xd =  252.5 msec

5. Calculated conditional probability of seeing 252.5 msec
given H0: p( 252.5 msec | H0 ) = 0.008.
– p = 0.008 is low (p ≤ 0.01); we are unlikely to see 252.5 msec

when H0 is true.  We reject H0, and embrace H1.
– This experiment suggests that subjects are faster under 

decreasing intensity.
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Some Considerations…
• The conditional probability p( X | H0 )

– Much of statistics involves how to calculate this 
probability; source of most of statistic’s complexity

– Logic of hypothesis testing the same regardless of how 
p( X | H0 ) is calculated

– If you can calculate p( X | H0 ), you can test a hypothesis

• The null hypothesis H0
– H0 usually in form f(μ1, μ2,…) = 0
– Gives hypothesis testing a double-negative logic:

assume H0 as the opposite of H1, then reject H0

– Philosophy is that can never prove something true, but 
can prove it false

– H1 usually in form f(μ1, μ2,…) ≠ 0; we don’t know what 
value it will take, but main interest is that it is not 0
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When We Reject H0
• Calculate α = p( X | H0 ), when do we reject H0?

– In psychology, two levels: α ≤ 0.05; α ≤ 0.01
– Other fields have different values

• What can we say when we reject H0 at α = 0.008?
– “If H0 is true, there is only an 0.008 probability of getting 

our results, and this is unlikely.”
• Correct!

– “There is only a 0.008 probability that our result is in 
error.”
• Wrong, this statement refers to p( H0 ), but that’s not what we 

calculated.

– “There is only a 0.008 probability that H0 could have been 
true in this experiment.”
• Wrong, this statement refers to p( H0 | X ), but that’s not what 

we calculated.
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When We Don’t Reject H0
• What can we say when we don’t reject H0 at 
α = 0.445?
– “We have proved that H0 is true.”
– “Our experiment indicates that H0 is true.”

• Wrong, statisticians agree that hypothesis testing cannot 
prove H0 is true.

• Statisticians do not agree on what failing to reject 
H0 means.
– Conservative viewpoint (Fisher): 

• We must suspend judgment, and cannot say anything about 
the truth of H0.

– Alternative viewpoint (Neyman & Pearson): 
• We “accept” H0, and act as if it’s true for now…
• But future data may cause us to change our mind

From [Howell 02], p 99
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Hypothesis Testing Outcomes

• α = p( X | H0 ), so hypothesis testing involves calculating α
• Two ways to be right:

– Find a result
– Fail to find a result and waste time running an experiment

• Two ways to be wrong:
– Type I error: we think we have a result, but we are wrong
– Type II error: a result was there, but we missed it

correct
(but wasted time)

p = 1 – α

wrong
type I error

p = α
H0 true

wrong
type II error

p = β

correct
a result!

p = 1 – β = power
H0 falseTrue 

state 
of the 
world

Don’t reject H0Reject H0

Decision
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When Do We Really Believe a Result?
• When we reject H0, we have a result, but:

– It’s possible we made a type I error
– It’s possible our finding is not reliable 

• Just an artifact of our particular experiment

• So when do we really believe a result?
– Statistical evidence

• α level: (p < .05, p < .01, p < .001)
• Power

– Meta-statistical evidence
• Plausible explanation of observed phenomena

– Based on theories of human behavior:
perceptual, cognitive psychology; control theory, etc.

• Repeated results
– Especially by others
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Hypothesis Testing Means
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Hypothesis Testing Means
• How do we calculate α = p( X | H0 ), when X is a 

mean?
– Calculation possible for other statistics, but most 

common for means

• Answer: we refer to a sampling distribution
• We have two conceptual functions:

– Population: unknowable property of the universe
– Distribution: analytically defined function,

has been found to match certain population statistics
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Calculating α = p( X | H0 ) with 
A Sampling Distribution

• Sampling distributions are analytic functions with area 1
• To calculate α = p( X | H0 ) given a distribution, we first 

calculate the value D, which comes from an equation of the 
form:

• α = p( X | H0 ) is equal to:
– Probability of seeing a value ≥ | D |
– 2 * (area of the distribution to the right of | D |)

• If H0 true, we expect D to be near central peek of distribution
• If D far from central peek, we have reason to reject the idea 

that H0 is true

( )( )
( )( ) , :effect ofty  variabili

  :effect of size 
2 Nsf

XfD =

D?
D?

Represents 
assumption
that H0 true
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A Distribution for Hypothesis 
Testing Means

• The Standard Normal Distribution (μ = 0, σ = 1) 
(also called the Z-distribution):
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The Central Limit Theorem
• Full Statement:

– Given population with (μ, σ2), the sampling 
distribution of means drawn from this 
population is distributed (μ, σ2/n), where n is the 
sample size.  As n increases, the sampling 
distribution of means approaches the normal 
distribution.

• Implication:
– As n increases, distribution of means becomes 

normal, regardless of how “non-normal” the 
population looks.

• How big does n have to be before means 
look normally distributed?
– For very “non-normal” data, n ≈ 30.
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Central Limit Theorem in Action

• This demonstrates: 
– As number of samples increases, distribution of means 

approaches normal distribution;
– Regardless of how “non-normal” the source distribution is!
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Response time data set A; 
N = 3436 data points. Data 
from [Living et al. 03].

Plotting 100 means drawn from A at random 
without replacement, where n is number of 
samples used to calculate mean.     
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The t Distribution
• In practice, when H0: μc – μd = 0 

(two means come from same population), 
we calculate α = p( X | H0 ) from t distribution, not Z distribution

• Why? Z requires the population parameter σ2, but σ2 almost 
never known.  We estimate σ2 with s2, but s2 biased to 
underestimate σ2.  Thus, t more spread out than Z distribution.

• t distribution parametric: parameter is df (degrees of freedom)

From [Howell 02], p 185

At ∞ df, t distribution 
same as normal 
distribution
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t-Test Example
• Null hypothesis H0: μs – μm = 0

– Subjects same speed whether stereo or mono viewing.

• Ran an experiment and collected samples:
– 32 subjects, collected 128 samples
– ns = 64, Xs = 36.431 sec, ss = 15.954 sec
– nm = 64, Xm = 34.449 sec, sm = 13.175 sec

• Look up t(126) = 0.766 in a 
t-distribution table: 0.445

• Thus, α = p(1.983 sec | H0 ) = 
0.445, and we do not reject H0.

Calculation described by [Howell 02], p 202
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- 0.766

t(126) 
distribution
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One- and Two-Tailed Tests
• t-Test example is a two-tailed test. 

– Testing whether two means differ, no preferred direction of 
difference: H1: μs – μm = d, either μs > μm or μs < μm

– E.g. comparing stereo or mono in VE: either might be faster
– Most stat packages return two-tailed results by default

• One-tailed test is performed when preferred direction of 
difference: H1: μs > μm
– E.g. in [Meehan et al. 03], hypothesis is that heart rate & 

skin conductance will rise in stressful virtual environment 

0 0.766

Area of shaded
regions: 0.445

- 0.7660 0.139

Area of shaded
region: 0.445

one-tailed test two-tailed test
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Power
• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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Interpreting α, β, and Power

• If H0 is true:
– α is probability we make a 

type I error: we think we have a 
result, but we are wrong

• If H1 is true:
– β is probability we make a 

type II error: a result was there, 
but we missed it

– Power is a more common term 
than β

wasted time
p = 1 – α

type I error
p = αH0 true

type II error
p = β

a result!
p = 1 – β = powerH0 falseTrue 

state 
of the 
world

Don’t reject H0Reject H0

Decision

α
μ1μ0

H0 H1

β

power =
1 – β



63

Increasing Power by Increasing α

• Illustrates α / power
tradeoff

• Increasing α:
– Increases power
– Decreases type II error
– Increases type I error

• Decreasing α:
– Decreases power
– Increases type II error
– Decreases type I error

α
μ1μ0

H0 H1

β

power

αβ

power

μ1μ0

H0 H1
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Increasing Power by Measuring 
a Bigger Effect

• If the effect size is 
large:
– Power increases
– Type II error

decreases
– α and type I error stay 

the same

• Unsurprisingly, large 
effects are easier to 
detect than small 
effects

α
μ1μ0

H0 H1

β

power

α
μ1μ0

β

power

H0 H1



65

Increasing Power by 
Collecting More Data

• Increasing sample size (N):
– Decreases variance
– Increases power
– Decreases type II error
– α and type I error stay the 

same
• There are techniques that 

give the value of N required 
for a certain power level.

• Here, effect size remains the same, 
but variance drops by half.

α
μ1μ0

H0 H1

β

power

H0 H1

α
μ1μ0

β

power
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Using Power
• Need α, effect size, and sample size for power: 

power = f( α, |μ0 – μ1|, N )

• Problem for VR / AR: 
– Effect size |μ0 – μ1| hard to know in our field

• Population parameters estimated from prior studies
• But our field is so new, not many prior studies

– Can find effect sizes in more mature fields 

• Post-hoc power analysis:
effect size = |X0 – X1|

– Estimate from sample statistics
– But this makes statisticians grumble 

(e.g. [Howell 02] [Cohen 88])
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Other Uses for Power
1. Number samples needed for certain power level:

N = f( power, α, |μ0 – μ1| or |X0 – X1| )
– Number extra samples needed for more powerful result
– Gives “rational basis” for deciding N [Cohen 88]

2. Effect size that will be detectable:
|μ0 – μ1| = f( N, power, α )

3. Significance level needed:
α = f( |μ0 – μ1| or |X0 – X1|, N, power )

(1) is the most common power usage
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Arguing the Null Hypothesis
• Cannot directly argue H0: μs – μm = 0.  But 

we can argue that |μ0 – μ1| < d.
– Thus, we have bound our effect size by d.  
– If d is small, effectively argued null hypothesis.

From [Cohen 88], p 16 

α
μ1μ0

H0 H1

β

power =
1 – β
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Example of Arguing H0
• We know GP is effective depth cue, 

but can we get close with other graphical cues?  

D
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om
 [L
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g 
et
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l. 

03
] 

0.111decreasingdecreasingwire+filloff
0.144both levelsboth levelsall levelson

mean error*intensityopacitydrawing styleground plane

• Our effect size is d = .087 standard deviations
power( α = .05, d = .087, N = 265 ) = .17

• Not very powerful.  Where can our experiment bound d?
d( N = 265, power = .95, α = .05 ) = .31 standard deviations

• This bound is significant at α = .05, β = .05, using same logic as 
hypothesis testing.  
But how meaningful is d < .31?  Other significant d’s:

.37,   .12,   .093,   .19

• Not very meaningful.  If we ran an experiment to bound 
d < .1, how much data would we need?

N( power = .95, α = .05, d = .1 ) = 2600

• Original study collected N = 3456, so N = 2600 reasonable

*F(1,1870) = 1.002, p = .317
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Analysis of Variance and Factorial 
Experiments

• Empiricism
• Experimental Validity
• Experimental Design
• Gathering Data
• Describing Data

– Graphing Data
– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing
– Hypothesis Testing Means
– Power
– Analysis of Variance and Factorial Experiments
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ANOVA: Analysis of Variance
• t-test used for comparing two means 

– (2 x 1 designs)

• ANOVA used for factorial designs
– Comparing multiple levels (n x 1 designs)
– Comparing multiple independent variables 

(n x m, n x m x p), etc.
– Can also compare two levels (2 x 1 designs);

ANOVA can be considered a generalization of a t-Test

• No limit to experimental design size or complexity

• Most widely used statistical test in psychological 
research

• ANOVA based on the F Distribution; 
also called an F-Test
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How ANOVA Works

• Null hypothesis H0: μ1 = μ2 = μ3 = μ4; H1: at least one mean differs
• Estimate variance between each group: MSbetween

– Based on the difference between group means
– If H0 is true, accurate estimation
– If H0 is false, biased estimation: overestimates variance

• Estimate variance within each group: MSwithin
– Treats each group separately
– Accurate estimation whether H0 is true or false

• Calculate F critical value from ratio: F = MSbetween / MSwithin
– If F ≈ 1, then accept H0

– If F >> 1, then reject H0

H0 likely
true

H0 likely
false
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ANOVA Uses The F Distribution
• Calculate α = p( X | H0 ) by looking up F critical value in 

F-distribution table
• F-distribution parametric: F ( numerator df, denominator df )
• α is area to right of F critical value (one-tailed test)
• F and t are distributions are related: F ( 1, q ) = t ( q )2

From [Saville Wood 91], p 52, and [Devore Peck 86], p 563
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ANOVA Example
• Hypothesis H1: 

–Platform (Workbench, Desktop, Cave, or 
Wall) will affect user navigation time in 
a virtual environment.

• Null hypothesis H0: μb = μd = μc = μw.
–Platform will have no effect on user 

navigation time.
• Ran 32 subjects, each subject used 

each platform, collected 128 data 
points.

• Reporting in a paper: F( 3, 93 ) = 3.1, p < .05
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55
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Workbench Desktop Cave Wall

Platform

Ti
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e 
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on

ds
)

± 95% Confidence Intervals

*p < .05
129.66779312059.0950Within (P x S)

0.0313.100*401.962531205.8876Between (platform)
pFMSdfSSSource

Data from [Swan et al. 03], calculations shown in [Howell 02], p 471 
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Main Effects and Interactions
• Main Effect

– The effect of a single independent variable
– In previous example, a main effect of platform on user 

navigation time: users were slower on the Workbench, relative 
to other platforms

• Interaction
– Two or more variables interact
– Often, a 2-way interaction can describe main effects

From [Howell 02], p 431
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Example of an Interaction
• Main effect of drawing style:

– F(2,14) = 8.84, p < .01
– Subjects slower with wireframe 

style

• Main effect of intensity:
– F(1,7) = 13.16, p < .01
– Subjects faster with decreasing 

intensity

• Interaction between drawing 
style and intensity:

– F(2,14) = 9.38, p < .01
– The effect of decreasing 

intensity occurs only for the 
wireframe drawing style; for fill 
and wire+fill, intensity had no 
effect

– This completely describes the 
main effects discussed above
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const

decr

±1 std errorIntensity

mean

Data from [Living et al. 03]



77

Reporting Statistical Results
• For parametric tests, give degrees of freedom, critical value, 

p value:
– F(2,14) = 8.84*, p < .01 (report pre-planned significance value)
– t(8) = 4.11, p = .0034 (report exact p value)
– F(8,12) = 5.826403, p = 3.4778689e10-3 

(too many insignificant digits)

• Give primary trends and findings in graphs
– Best guide is [Tufte 83]

• Use graphs / tables to give data, and use text to discuss 
what the data means
– Avoid giving too much data in running text
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