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Motivation and Goals

o Studying experimental design and analysis at

Mississippi State University:

— PSY 3103 Introduction to Psychological Statistics
— PSY 3314 Experimental Psychology

— PSY 6103 Psychometrics

— PSY 8214 Quantitative Methods In Psychology Il
— PSY 8803 Advanced Quantitative Methods

— |E 6613 Engineering Statistics |

— |E 6623 Engineering Statistics Il

— ST 8114 Statistical Methods

— ST 8214 Design & Analysis Of Experiments

— ST 8853 Advanced Design of Experiments |

— ST 8863 Advanced Design of Experiments Il

e 7 undergrad hours; 30 grad hours; 3 departments!

 Course attendee backgrounds?



Motivation and Goals

« What can we accomplish in one day?

» Study subset of basic techniques

— Presenters have found these to be the most
applicable to VR, AR systems

 Focus on intuition behind basic techniques

« Become familiar with basic
concepts and terms

— Facilitate working with collaborators from
psychology, industrial engineering, statistics, etc.



Outline

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
* Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments



Why Human Subject (HS) Experiments?

* VR and AR hardware / software more mature

* Focus of field:
— Implementing technology — using technology

 Increasingly running HS experiments:

— How do humans perceive, manipulate, cognate with
VR, AR-mediated information?

— Measure utility of VR / AR for applications

 HS experiments at VR:

VRyear papers % sketches % posters %
2003 10/29 | 35% 5/14 | 36%

2004 9/26 | 35% 5123 | 22%
2005 13/29 | 45% 1/8 13% | 8/15 | 53%
2006 12 /27 | 44% 2/10 20% | 1/10 | 10%
2007 9/26 | 35% 3/15 20% | 5/18 | 28%




Logical Deduction vs. Empiricism

* Logical Deduction
— Analytic solutions in closed form
— Amenable to proof techniques
—Much of computer science fits here

— Examples:
 Computability (what can be calculated?)
« Complexity theory (how efficient is this algorithm?)

 Empirical Inquiry
— Answers questions that cannot be proved
analytically
—Much of science falls into this area

— Antithetical to mathematics, computer science



What is Empiricism?

 The Empirical Technique
— Develop a hypothesis, perhaps based on a theory
— Make the hypothesis testable
— Develop an empirical experiment
— Collect and analyze data
— Accept or refute the hypothesis
— Relate the results back to the theory
— If worthy, communicate the results to your community

o Statistics:

— Foundation for empirical work; necessary but not
sufficient

— Often not useful for managing problems of gathering,
interpreting, and communicating empirical information.



Where is Empiricism Used?

« Humans are very non-analytic

 Fields that study humans:
—Psychology / social sciences
— Industrial engineering
— Ergonomics
—Business / management
—Maedicine

* Fields that don’t study humans:
— Agriculture, natural sciences, etc.

« Computer Science:
—HCI
— Software engineering

10



Experimental Validity

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
* Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Designing Valid Empirical Experiments

 Experimental Validity

—Does experiment really measure what we want it
to measure?

— Do our results really mean what we think
(and hope) they mean?

— Are our results reliable?

 If we run the experiment again, will we get the same
results?

« Will others get the same results?

 Validity is a large topic in empirical inquiry

12



Experimental Variables

* Independent Variables
—What the experiment is studying

— Occur at different levels
 Example: stereopsis, at the levels of stereo, mono

— Systematically varied by experiment

 Dependent Variables
—What the experiment measures

— Assume dependent variables will be effected by
independent variables

— Must be measurable quantities

 Time, task completion counts, error counts,
survey answers, scores, etc.

« Example: VR navigation performance, in total time
13



Experimental Variables

* Independent variables can vary in two ways
— Between-subjects: each subject sees a different level of
the variable
« Example: 2 of subjects see stereo, > see mono

— Within-subjects: each subject sees all levels of the
variable

« Example: each subject sees both stereo and mono

« Confounding factors (or confounding variables)
— Factors that are not being studied, but will still affect
experiment
« Example: stereo condition less bright than mono condition

— Important to predict and control confounding factors, or
experimental validity will suffer

14



Experimental Design

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Experimental Designs

« 2 x 1 is simplest possible design, with one independent

variable at two levels:

level 1 stereo

level 2 mono

* Important confounding factors for within subject variables:
— Learning effects
— Fatigue effects

« Control these by counterbalancing the design

— Ensure no systematic variation between levels and the order
they are presented to subjects

Subjects 1st condition 2"d condition

1,3,5,7 stereo mono

2,4,6,8 mono stereo o




Factorial Designs

 nx 1 designs generalize the number of levels:

VE terrain type

flat

hilly

mountainous

* Factorial designs generalize number of independent variables

and the number of levels of each variable
« Examples: n x m design, n x m x p design, etc.
* Must watch for factorial explosion of design size!

3 x 2 design: Stereopsis
VE terrain type stereo mono
flat
hilly

mountainous

17



Cells and Levels

e Cell: each combination of levels

* Repetitions: typically, the combination of levels at
each cell is repeated a number of times

Stereopsis
VE terrain type stereo mono
| __—cell
flat |
hilly

mountainous

 Example of how this design might be described:
— “A 3 (VE terrain type) by 2 (stereopsis) within-subjects
design, with 4 repetitions of each cell.”

— This means each subject would see 3 x 2 x 4 = 24 total
conditions

— The presentation order would be counterbalanced

18



|

Counterbalancing

 Addresses time-based confounding factors:
— Within-subjects variables: control learning and fatigue effects

— Between-subjects variables: control calibration drift, weather,
other factors that vary with time

 There are two counterbalancing methods:

— Random permutations
— Systematic variation

1 2

2 1
2X2

« Latin squares are a very useful and popular technique

|

2

R Wk W

2

6 x 3 (there is no 3 x 3 that has all 3 properties)

3
1
2
2
3

1

1

2
3
4

2 3
4 1
1 4
3 2
4x4

A

3
2
1

e Latin square properties:

— Every level appears in
every position the same
number of times

— Every level is followed by
every other level

— Every level is preceded
by every other level

19



Counterbalancing Example

o “A 3 (VE terrain type) by 2 (stereopsis) within-
subjects design, with 4 repetitions of each cell.”

 Form Cartesian product of Latin squares
{6 x 3} (VE Terrain Type) ® {2 x 2} (Stereopsis)

» Perfectly counterbalances groups of 12 subjects

Subject Presentation Order

1 1A, 1B, 2A, 2B, 3A, 3B
1B, 1A, 2B, 2A, 3B, 3A
2A, 2B, 3A, 3B, 1A, 1B
2B, 2A, 3B, 3A, 1B, 1A
3A, 3B, 1A, 1B, 2A, 2B
3B, 3A, 1B, 1A, 2B, 2A
1A, 1B, 3A, 3B, 2A, 2B
1B, 1A, 3B, 3A, 2B, 2A
2A, 2B, 1A, 1B, 3A, 3B
2B, 2A, 1B, 1A, 3B, 3A
3A, 3B, 2A, 2B, 1A, 1B
3B, 3A, 2B, 2A, 1B, 1A

Qo |N(fojgah|~h[W|N

-
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Experimental Design Example #1

trial number 1 ———— 216[217 v 432
ground plane on off

%
stereo on off on off
drawing style wire fill wire+fill

+ || alpha const [ decr | const | decr | const | decr

o |s|lols|ols|ols|0s]|0] 5

i i c | Qlc|Q|lc|L]lc|Q]lc|L]|lc]|@
Intensity sls(s|s|s|elsl8|c|s|8]|

target position middle far

rp?

repetition

1 sv = systemically varied, 2rp = randomly permuted

« All variables within-subject
From [Living et al. 03]



Experimental Design Example #2

% | Stereo Viewing on off
(>
3
o
= | Control Movement rate position rate position
»
c
R=J
o Frame of ego | exo | ego | exo | ego | exo | ego | exo
-+ | Reference g g g 9

o
< | § |cave < < < : = < = =
= | 3 g |l |& |8 |& |8 |&|3&
2 | £ |wall 3 & 3 8 a 8 8 8
= @ = = e - o - -+ -+
o0 o 7 (7 7 7 7 7 7 7
c U - ()| o - - N N N
o = workbench | | | > = N N N
o g.. o P - | | | | |

N N N N

= | 3 |desktop o S N 0 R

 Mixed design: some variables between-subject,

others within-subject.

From [Swan et al. 03]
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Gathering Data

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments

23



Gathering Data

« Some unique aspects of VR and AR
— Can capture, log, and analyze tracker trajectory

— If we log head / hand trajectory so we can play it back,
must have way of logging critical incidents

— VR / AR equipment more fragile than other Ul setups

— In a CAVE:

» Observing a subject can break their presence / immersion

* Determining button presses when experimenter cannot see
wand

— In AR, very difficult to know what user is seeing
« Can mount separate display near user or on their back
* Could mount lightweight camera on user’s head

 Measurable phenomena:
— Button presses, physical actions, answers

24



Pilot Testing a Design

 Experimental designs have to be tested and
iterated (debugged)

» Typical flow:
— 1%t run: subjects are you, collaborators
— 2" run: small number of preliminary subjects
— 3" run: subset of real subjects

* With each run, problems are revealed; fix and
iterate

* For later runs, perform data analysis before
gathering additional data

25



Graphing Data

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Types of Statistics

* Descriptive Statistics
— Describe and explore data

— Summary statistics:
many numbers — few numbers

— All types of graphs and visual representations

— Data analysis begins with descriptive stats
 Understand data distribution
 Test assumptions of significance tests

 Inferential Statistics
— Detect relationships in data
— Significance tests

— Infer population characteristics from sample
characteristics

27



Exploring Data with Graphs

 Histogram common data overview method
median = 59.5 mean =60.26 mode = 62

60 |~

50

Frequency
] OV B
S S S

[a—y
o

37 42 47 52 57 62 67 72 77 82 87 92 97 102 107 112 117 122 127
Reaction time (Hundredths of a second)

From [Howell 02] p 21
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Classifying Data with Histograms

0.04

0.03

0.02

0.01

-4.0

0.07
0.06
0.05
0.04
0.03
0.02
0.01

Score

(a) Normal

10

Score

From [Howell 02] p 28

(c) Negatively skewed

20

25

0.05
0.04
0.03
0.02
0.01

Score
(b) Bimodal

0.07 -
0.06
0.05 §
0.04
0.03 =
oo b
0.01 =

._ . . i = ; m >
Score
(d) Positively skewed
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From [Howell 02] p 21, 23

(PUO23s © JO SYIPAIPUNY ) IWI} UOTIILIY
LTI CTL LITTIT LOT TOT L6 T6 L8 T8 LL TL L9 T9 LS TS Ly T LE

Stem-and-Leaf:

Histogram From Actual Data

Frequency
o w = o
< < < © Raw Data Stem Leaf
1 | 3637 383839393940 3 | 67
40 40 40 41 41 41 42 42 3. 88999
42 43 43 43 43 43 44 44 4% 0000111
44 44 44 45 45 45 45 45 4 22233333
45 46 46 46 46 46 46 46 4f 44444555555
46 46 46 46 47 47 47 47 4s 66666666666777777777
47 47 47 47 47 48 48 48 4. 888899999
48 49 49 49 49 49 50 50 5* 00000111111111111
50 50 50 51 51 51 51 51 5t 222222222233333333
51 51 51 51 51 51 51 52 5f 4444445555555
52 52 52 52 52 52 52 52 5s 66666666667777777
52 53 53 53 53 53 53 53 5. 8888RB8ER’EERIY999999999
53 54 54 54 54 54 54 55 o* 0000000000001 1111111111
55 55 55 55 55 55 6t 222222222222223333333333
of 444444455555555
6s 666666667777T77TT777777
6. 889999999
T* 01111
Tt 22222222333
7t 44444455
7s 666677
7. 88899
g 00011
8t 2333
8f 5
8s 67
8. 8
o* 0
Ot
of 4455
9s
9. 8
High 104; 104; 125

FIGURE 2.4 Stem-and-leaf display for reaction time data
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Histogram From Actual Data

Stem-and-Leaf:

Final Recorded Grades

1

O© 00 00 01 ©O O O O O

w
=

3% F
0% F
0% F
0% F
0% F
0% F
16% D
26% C
26% B
29% A

©Co~NO O h~WNPEO

O

34788
12233469
01244699
001123346

Grades from my Autumn 2005 analysis of algorithms class
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T

1.51QR)

Interquarile
Rance {IQR)

i

1.51QR)

Boxplot

O =——— Maximum obkservation
___D____ w— Upper fence {not crawn)

1 5(1QR)above 75 Ppercertie

T =— Maximum obkservation kelow upper fence
75 P percentile

+ =—— Mean (specifed with SYMBOL1 stement)
Median
25 hpercentile

1

~~—— Minimum observaion

- Lower fence (not crawn)
1 5(1GR)below 25 P percertile

Distance (meters)

Perceived Target Distance vs Referent Distance

50
+ Actual Referent Distance )
¢ Perceived Mean Target Distance =
400  4Subjects; 640 Data Points - N
30
20
10
0-

534 1092 1650 22.08 27.66  33.24  38.82
Actual Referent Distance (meters)

« Emphasizes variation and relationship to mean
 Because narrow, can be used to display side-by-

side groups

Data from [Swan et al. 06]
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Example Histogram and Boxplot from Real Data

min value 2\5th 7\5th upper fence max values (outliers)

median = 1453 | C
0.30 T j_

0.25
mean = 2355

0.20 1

Frequency
o
o

0.10 1

; mm

600 2400 4200 6000 7800 9600 11400 13200 15000
RT_Milliseconds

Data from

[Living et al. 03] 33



We Have Only Scratched the Surface...

» There are a vary large number of graphing techniques

» Tufte’s [83, 90] works are classic, and stat books show many
more examples (e.g. Howell [03]).

RESOLUTION
0 CELL

TIME ( Msec)

125 kHz

N And plenty of bad examples!

FREQUENCY

Lots of good examples... From [Tufte 83], p 134, 62
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Descriptive Statistics

 Empiricism
 Experimental Validity
« Usability Engineering
 Experimental Design
 Gathering Data

* Describing Data

— Graphing Data
— Descriptive Statistics
 Inferential Statistics
— Hypothesis Testing
— Hypothesis Testing Means
— Power
— Analysis of Variance and Factorial Experiments
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Summary Statistics

 Many numbers — few numbers

 Measures of central tendency:
— Mean: average
— Median: middle data value
—Mode: most common data value

 Measures of variability / dispersion:

— Mean absolute deviation
—Variance
— Standard Deviation

36



Populations and Samples

 Population:

— Set containing every possible element that we
want to measure

— Usually a Platonic, theoretical construct
—Mean: y Variance: 0% Standard deviation: o

« Sample:

— Set containing the elements we actually
measure (our subjects)

—Subset of related population

—Mean: X Variance: s2 Standard deviation: s
Number of samples: N

37



Measuring Variability / Dispersion

Mean:

Variance:

, S X-XJ

S =
N -1

2 Z(X _ﬂ)z

O =
N

Mean absolute deviation:

Z\x —Y\
N

m.a.d.=

Standard deviation:

Jz<x—f)2

N-1

 Standard deviation uses same units as
samples and mean.

» Calculation of population variance o? is
theoretical, because y almost never
known and the population size N would
be very large (perhaps infinity). 38



Sums of Squares, Degrees of Freedom,
Mean Squares

 Very common terms and concepts

—\
X — X
o2 _ Z( ) _ SS _sums of squares _ MS (mean squares)
N -1 df  degreesof freedom

 Sums of squares:
— Summed squared deviations from mean

* Degrees of freedom:

— Given a set of N observations used in a calculation, how
many numbers in the set may vary

— Equal to N minus number of means calculated
 Mean squares:

— Sums of squares divided by degrees of freedom
— Another term for variance, used in ANOVA 39



Hypothesis Testing

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Hypothesis Testing

* Goal is to infer population characteristics
from sample characteristics

30

(]
=

population

\/

Frequency

[

—

o
n

T~

— | samples

_— h' -_— =

G A o % o Sy s T G B Iy Jy Jg O O % 25 2 & &

From [Howell 02], p 78

~
0 0 GQfOGOOJGO

Std. Dev = 10.56
Mean = 49.1]
N =289.00
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Testable Hypothesis

* General hypothesis: The research question
that motivates the experiment.

* Testable hypothesis: The research
question expressed In a way that can be
measured and studied.

 Generating a good testable hypothesis is a
real skill of experimental design.
— By good, we mean contributes to experimental
validity.
— Skill best learned by studying and critiquing

previous experiments. "



Testable Hypothesis Example

General hypothesis: Stereo will make people more effective
when navigating through a virtual environment (VE).

Testable hypothesis: We measure time it takes for subjects
to navigate through a particular VE, under conditions of
stereo and mono viewing. We hypothesis subjects will be
faster under stereo viewing.

Testable hypothesis requires a measurable quantity:
— Time, task completion counts, error counts, etc.

Some factors effecting experimental validity:

— Is VE representative of something interesting
(e.g., a real-world situation)?

— Is navigation task representative of something interesting?

— Is there an underlying theory of human performance that can
help predict the results? Could our results contribute to this
theory? 43



What Are the Possible Alternatives?

- Let time to navigate be p_: stereo time; y_: mono time
— Perhaps there are two populations: y, -y =d

Ms My (they could be s My (they could
close together) be far apart)

— Perhaps there is one population: y, -y, =0

I"sium 44



Hypothesis Testing Procedure

1. Develop testable hypothesis H,: y. -y =d
— (E.g., subjects faster under stereo viewing)

2. Develop null hypothesis H,: y.— ., =0
— Logical opposite of testable hypothesis

3. Construct sampling distribution assuming H, is true.

4. Run an experiment and collect samples; yielding sampling
statistic X.

— (E.g., measure subjects under stereo and mono conditions)

5. Referring to sampling distribution, calculate conditional
probability of seeing X given H,: p( X | H, ).
— If probability is low (p < 0.05, p < 0.01), we are unlikely to see X
when H, is true. We reject H,, and embrace H,.

— If probability is not low (p > 0.05), we are likely to see X when
H, is true. We do not reject H,,.

45



Data from [Swan et al. 03]

Example 1: VE Navigation with Stereo Viewing

1. Hypothesis H;: y.—u_ =d
— Subjects faster under stereo viewing.

2. Null hypothesis H,: uy.—p.. =0
— Subjects same speed whether stereo or mono viewing.

3. Constructed sampling distribution assuming H, is true.

4. Ran an experiment and collected samples:
— 32 subjects, collected 128 samples
— X, =36.431 sec; X, = 34.449 sec; X, — X, =1.983 sec

5. Calculated conditional probability of seeing 1.983 sec given
H,: p( 1.983 sec | H,) = 0.445.

— p = 0.445 not low, we are likely to see 1.983 sec when H, is
true. We do not reject H,,.

— This experiment did not tell us that subjects were faster under
stereo viewing.

46



Data from [Living et al. 03]

Example 2: Effect of Intensity on AR
Occluded Layer Perception

. Hypothesis H,: y.—pu,=d

— Tested constant and decreasing intensity. Subjects faster
under decreasing intensity.

. Null hypothesis H,: y.—u,=0

— Subjects same speed whether constant or decreasing intensity.

. Constructed sampling distribution assuming H, is true.

. Ran an experiment and collected samples:

— 8 subjects, collected 1728 samples
— X, =2392.4 msec; X, =2339.9 msec; X_—- X, = 252.5 msec

. Calculated conditional probability of seeing 252.5 msec

given H,: p( 252.5 msec | H,) = 0.008.

—p =0.008 is low (p < 0.01); we are unlikely to see 252.5 msec
when H, is true. We reject H,, and embrace H,.

— This experiment suggests that subjects are faster under
decreasing intensity.

47



Some Considerations...
» The conditional probability p( X | H,)

— Much of statistics involves how to calculate this
probability; source of most of statistic’s complexity

— Logic of hypothesis testing the same regardless of how
p( X| H,) is calculated

— If you can calculate p( X | H, ), you can test a hypothesis

e The null hypothesis H,
— H, usually in form f(u,, y,,...) =0

— Gives hypothesis testing a double-negative logic:
assume H, as the opposite of H,, then reject H,

— Philosophy is that can never prove something true, but
can prove it false

— H,; usually in form f(u,, y,,...) # 0; we don’t know what
value it will take, but main interest is that it is not 0

48



When We Reject H,

 Calculate a = p( X | H,), when do we reject H,?
— In psychology, two levels: a < 0.05; a < 0.01
— Other fields have different values

« What can we say when we reject H, at a = 0.008?

— “If H, is true, there is only an 0.008 probability of getting
our results, and this is unlikely.”

e Correct!

— “There is only a 0.008 probability that our result is in
error.”

* Wrong, this statement refers to p( H, ), but that’s not what we
calculated.

— “There is only a 0.008 probability that H, could have been
true in this experiment.”

« Wrong, this statement refers to p( H,| X'), but that’s not what
we calculated.

49



When We Don’t Reject H,

« What can we say when we don’t reject H, at
a = 0.4457
— “We have proved that H, is true.”

— “Our experiment indicates that H, is true.”

* Wrong, statisticians agree that hypothesis testing cannot
prove H, is true.

o Statisticians do not agree on what failing to reject
H, means.

— Conservative viewpoint (Fisher):

 We must suspend judgment, and cannot say anything about
the truth of H,,.

— Alternative viewpoint (Neyman & Pearson):
« We “accept” H,, and act as if it’s true for now...
« But future data may cause us to change our mind

From [Howell 02], p 99

50



Probabilistic Reasoning

* If hypothesis testing was absolute:

— If H, is true, then X cannot occur...however, X has
occurred...therefore H, is false.

— e.g.: If a person is a Martian, then they are not a member of
Congress (true)...this person is a member of
Congress...therefore they are not a Martian. (correct result)

— e.g.: If a person is an American, then they are not a
member of Congress (false)...this person is a member of
Congress...therefore they are not an American. (correct
result because if-then false)

 However, hypothesis testing is probabilistic:

— If H, is true, then Xis highly unlikely...however, X has
occurred...therefore H, is highly unlikely.

— e.g.: If a person is an American, then they are probably not
a member of Congress (true, right?)...this person is a
member of Congress...therefore they are probably not an
American. (correct hypothesis testing reasoning, but
incorrect result) 51

From [Cohen 94]



Hypothesis Testing Outcomes

Reject H, Don’t reject H,
correct wrong
H, false a result! type Il error
p=1-B=power p=p
wrong correct
H, true type | error (but wasted time)
p=a p=1-a

 p( X| H,) compared to a, so hypothesis testing involves setting
a (typically 0.05 or 0.01)

« Two ways to be right:

— Find a result

— Fail to find a result and waste time running an experiment
 Two ways to be wrong:

— Type | error: we think we have a result, but we are wrong

— Type Il error: a result was there, but we missed it 5



When Do We Really Believe a Result?

 When we reject H,, we have a result, but:
—It’s possible we made a type | error

—It’s possible our finding is not reliable
« Just an artifact of our particular experiment

« So when do we really believe a result?

— Statistical evidence

o alevel: (p<.05, p<.01, p<.001)
« Power

— Meta-statistical evidence

* Plausible explanation of observed phenomena

— Based on theories of human behavior:
perceptual, cognitive psychology; control theory, etc.

 Repeated results
— Especially by others

53



Hypothesis Testing Means

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Hypothesis Testing Means

« How do we calculate a =p( X | H, ), when X is a
mean?

— Calculation possible for other statistics, but most
common for means

 Answer: we refer to a sampling distribution

 We have two conceptual functions:
— Population: unknowable property of the universe

— Distribution: analytically defined function,
has been found to match certain population statistics

55



Calculating a = p( X | H, ) with
A Sampling Distribution

« Sampling distributions are analytic functions with area 1

* To calculate a = p( X | H,) given a distribution, we first
calculate the value D, which comes from an equation of the

form:
5 (size of effect: f(X ) ) Represents
(variability of effect : f(s?,N)) assumption
/ \itlat H, true

"D?

a=p(X| H,)is equal to:
— Probability of seeing avalue2| D |
— 2 * (area of the distribution to the right of | D |)

If H, true, we expect D to be near central peek of distribution

If D far from central peek, we have reason to reject the idea
that H, is true

D?
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A Distribution for Hypothesis
Testing Means

04

0.3

0.2

0.1

0 |

-4 -3 -2 -1 0 1 2 3 4

 The Standard Normal Distribution (u=0, c=1)
(also called the Z-distribution):

N(X;u,0)=

1
O\ 27T



The Central Limit Theorem

e Full Statement:

— Given population with (u, 0?), the sampling
distribution of means drawn from this
population is distributed (u, 62/n), where n is the
sample size. As nincreases, the sampling
distribution of means approaches the normal
distribution.

 Implication:
— As n increases, distribution of means becomes

normal, regardless of how “non-normal” the
population looks.

 How big does n have to be before means
look normally distributed?

—For very “non-normal” data, n = 30.
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Central Limit3Theorem in Action

030 —-—n=3
30 - _
= n=5
0.257
_ T 25 n=7
0.20 C:), n=15
O 20
)
0.15 B d:, 15
=
010 8 10
L
©600 2000 4200 6000 700 600 00 1900 15000 0 ‘ ‘ d B
RT_Millissconds 950 1950 2950 3950 4950 5950 6950
Time (Milliseconds)
Response time data set A; Plotting 100 means drawn from A at random
N = 3436 data points. Data without replacement, where n is number of
from [Living et al. 03]. samples used to calculate mean.

 This demonstrates:

— As number of samples increases, distribution of means
approaches normal distribution;

— Regardless of how “non-normal” the source distribution is! 59



The t Distribution

 In practice, when H,: y.—u,=0
(two means come from same population),
we calculate a = p( X | H,) from t distribution, not Z distribution

« Why? Z requires the population parameter o2, but o? almost
never known. We estimate o2 with s2, but s2 biased to
underestimate o2. Thus, t more spread out than Z distribution.

 tdistribution parametric: parameter is df (degrees of freedom)

y 1=z
\At = df, t distribution

same as normal
distribution

f(t)

60
From [Howell 02], p 185 ‘



t-Test Example

* Null hypothesis H,: y.—pu =0
— Subjects same speed whether stereo or mono viewing.

 Ran an experiment and collected samples:
— 32 subjects, collected 128 samples
— ng, =64, X, = 36.431 sec, s, = 15.954 sec
—n,, =64, X =34.449 sec, s, =13.175 sec

— , 2

t(126) = f{s(xl)\l — X —0.766, 3;2) _ (n, _]r-])ss ‘;(nmz_l)sm
\/ (}/ }/ j s TNy —

 Look up £(126) = 0.766 in a t(126) Area of shaded

t-distribution table: 0.445 distribution regions: 0.445

e Thus, a=p(1.983 sec | H,)=
0.445, and we do not reject H,.

-0.766 0 0.766

61
Calculation described by [Howell 02], p 202



One- and Two-Tailed Tests

* t-Test example is a two-tailed test.

— Testing whether two means differ, no preferred direction of
difference: H,: y_. -y =d, either y.>pu_orpu <pu_

— E.g. comparing stereo or mono in VE: either might be faster

— Most stat packages return two-tailed results by default

* One-tailed test is performed when preferred direction of
difference: H,: u_ >

— E.g. in [Meehan et al. 03], hypothesis is that heart rate &
skin conductance will rise in stressful virtual environment

Area of shaded
region: 0.445

Area of shaded
regions: 0.445

0 0.139 -0.766 0 0.766

one-tailed test two-tailed test 62



Power

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Interpreting a, 8, and Power

Reject H, Don’t reject H,
a result! type Il error
H, false p=1-B = power p=p
H. t type | error wasted time
o true p=a p=1-a
« If H, is true: H, H,
— ais probability we make a
type | error: we think we have a power =
result, but we are wrong 1-8
o If H, is true:
— B is probability we make a
type Il error: a result was there,
but we missed it B
— Power is a more common term Mo M

than B8



Increasing Power by Increasing a

H, H,

* lllustrates a/ power
tradeoff

 Increasing a:
— Increases power
— Decreases type Il error
— Increases type | error

 Decreasing a: power
— Decreases power
— Increases type Il error
— Decreases type | error B

My M4

65



Increasing Power by Measuring
a Bigger Effect

e If the effect size is
large:
— Power increases

— Type Il error
decreases

— a and type | error stay
the same

H,

H,

 Unsurprisingly, large
effects are easier to
detect than small
effects

-

M,

power
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Increasing Power by
Collecting More Data

H, H, H, H,

B

power

Ho Hy
* Increasing sample size (N):
— Decreases variance
— Increases power
— Decreases type Il error
— a and type | error stay the

same J B

 There are techniques that My M4

give the va_lue of N required e Here, effect size remains the same,
for a certain power level. but variance drops by half.
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Using Power

* Need a, effect size, and sample size for power:

power = f( a, [ty — 4|, N)

e Problem for VR / AR:

— Effect size |y, — y,| hard to know in our field
* Population parameters estimated from prior studies
« But our field is so new, not many prior studies

— Can find effect sizes in more mature fields

 Post-hoc power analysis:
effect size = | X, — X]
— Estimate from sample statistics

— But this makes statisticians grumble
(e.g. [Howell 02] [Cohen 88])

68



Other Uses for Power

1. Number samples needed for certain power level:
N = f( power, a, |u, — py| or | X, — Xi|)

— Number extra samples needed for more powerful result
— Gives “rational basis” for deciding N [Cohen 88]

2. Effect size that will be detectable:
| — k4] = A N, power, a)

3. Significance level needed:
a = f{ |y — | or [X; — Xi|, N, power )

(1) is the most common power usage
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Arguing the Null Hypothesis

« Cannot directly argue H,: py. — ., = 0. But
we can argue that |y, — 4| < d.
—Thus, we have bound our effect size by d.

—If d is small, effectively argued null hypothesis.

From [Cohen 88], p 16
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Data from [Living et al. 03]

Example of Arguing H,

« We know GP is effective depth cue,
but can we get close with other graphical cues?

ground plane drawing style opacity intensity mean error*
on all levels both levels both levels 0.144
off wire+fill decreasing decreasing 0.111

*F(1,1870) =1.002, p = .317
Our effect size is d = .087 standard deviations

power( a=.05,d=.087, N=265) = .17

* Not very powerful. Where can our experiment bound d?
d( N = 265, power = .95, a=.05) = .31 standard deviations

 This bound is significant at a = .05, 8 = .05, using same logic as
hypothesis testing.
But how meaningful is d <.31? Other significant d’s:

37, 12, .093, .19

* Not very meaningful. If we ran an experiment to bound
d < .1, how much data would we need?

N( power = .95, a=.05,d=.1) =2600

» Original study collected N = 3456, so N = 2600 reasonable 71



Analysis of Variance and Factorial
Experiments

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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ANOVA: Analysis of Variance

* t-test used for comparing two means
— (2 x 1 designs)

« ANOVA used for factorial designs
— Comparing multiple levels (n x 1 designs)

— Comparing multiple independent variables
(n x m, n x m x p), etc.

— Can also compare two levels (2 x 1 designs);
ANOVA can be considered a generalization of a t-Test

* No limit to experimental design size or complexity

 Most widely used statistical test in psychological
research

« ANOVA based on the F Distribution;
also called an F-Test
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How ANOVA Works

H, likely H, likely
true false

—

Null hypothesis H,: y, = u, = u; = y,; H,: at least one mean differs
Estimate variance between each group: MS, . ccn,
— Based on the difference between group means
— If H, is true, accurate estimation
— If H, is false, biased estimation: overestimates variance
Estimate variance within each group: MS
— Treats each group separately
— Accurate estimation whether H, is true or false
Calculate F critical value from ratio: F=MS, .., / MS
— If F=1, then accept H,
— If F>>1, then reject H,

within

within
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ANOVA Uses The F Distribution

« Calculate a =p( X | H,) by looking up F critical value in
F-distribution table

* F-distribution parametric: F ( numerator df, denominator df)
* ais area to right of F critical value (one-tailed test)

e Fand tare distributions are related: F(1,q)=t(q)?
Probability density

!
A
1.51¢
Fs0,50
£ Desired
s upper-tail
1.0¢ F]ellﬁ -] area = «
Fyq
F
0.51
Corresponding
F critical value
0 . ~ = >
0 1 2

3 F, 4 values

75
From [Saville Wood 91], p 52, and [Devore Peck 86], p 563



* Hypothesis H,:
—Platform (Workbench, Desktop, Cave, or

Wall) will affect user navigation time in
a virtual environment.

* Null hypothesis H,: u, = u, = .= M,

—Platform will have no effect on user
navigation time.

 Ran 32 subjects, each subject used
each platform, collected 128 data

55

Time (seconds)
N N w w H H [3)]
o (3, ] o (3, ] o (3, o

ANOVA Example

+ 95% Confidence Intervals

Workbench

Desktop Cave

points. Wall
Platform
Source SS df MS F
Between (platform) 1205.8876 3 401.9625 3.100* | 0.031
Within (P x S) 12059.0950 | 93 129.6677
*p <.05

* Reporting in a paper: F(3,93)=3.1,p<.05

Data from [Swan et al. 03], calculations shown in [Howell 02], p 471
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Main Effects and Interactions

 Main Effect
— The effect of a single independent variable

— In previous example, a main effect of platform on user
navigation time: users were slower on the Workbench, relative

to other platforms

 Interaction
— Two or more variables interact
— Often, a 2-way interaction can describe main effects

Interaction

No interaction
- )
E 1 1 \ Q B[ /.Bw
— r——=h5, \ »B, = - Y
IT) = B / - \ ,’ — ’ \ I.Bf_’
@) 2 Vi v o ”‘ B] A Y ’/
‘,’ o o-—-o——-oBJ v \"
—L 1 5 | | | i | l
A A, A A A, Ay A A, A A A, A A A Ay A A A

77
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Example of an Interaction

* Main effect of drawing style:
— F(2,14) = 8.84, p < .01
— Subjects slower with wireframe

3600
style m Intensity +1 std error
g 3400 | const
« Main effect of intensity: Q 3200 +
N
- F(1,7) =13.16, p < .01 = 3000 - mean
— Subjects faster with decreasing % 2800 |
intensity S
i= 2600  decr
(]
« Interaction between drawing g 2400 7
style and intensity: & 2200 %
(4
— F(2,14) =9.38, p < .01 X 2000 | |
— The effect of decreasing wireframe fill wire=+fill
intensity occurs only for the Drawing Style
wireframe drawing style; for fill
and wire+fill, intensity had no
effect
— This completely describes the
main effects discussed above "

Data from [Living et al. 03]




Reporting Statistical Results

* For parametric tests, give degrees of freedom, critical value,
p value:
— F(2,14) = 8.84*, p < .01 (report pre-planned significance value)
— t(8) =4.11, p =.0034 (report exact p value)

— F(8,12) = 5.826403, p = 3.4778689e10-3
(too many insignificant digits)

* Give primary trends and findings in graphs
— Best guide is [Tufte 83]

* Use graphs / tables to give data, and use text to discuss
what the data means

— Avoid giving too much data in running text
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Outline

Motivation: VE Latency/Asynchrony characterization
Psychophysics: What and why?

Classical methods of psychophysics

— Method of Constant Stimuli
 Detection theory

— Method of Limits

e Up-Down procedures

Adaptive methods of psychophysics
Psychometric function
IHlustrations from NASA-Ames studies



Temporal & Spatial Imperfection in (Visual) VEs

Excessive time delay and insufficient frame (update) rate

* Poor dynamic registration, dynamic instability
* “Sloshiness,” jumpiness 1n response to observer motion
Whole 1mage lags in response to head motion

Systematic and random error 1n spatial measurement
* Poor static registration wrt external world
* VE image jitter

Degraded motor and perceptual performance

* Diminished interactivity, immersion, & sense of “presence”
* “Cybersickness”



Latency Induced Rendering Errors

6 Frames Delay
20 Hz Update Rate
~ 380 ms Latency

Hand Translation Head Translation

ITOr
Future
ee mMotion




Latency/Asynchrony Studies
ADSP/ACD Group

*Phenomenon: Tracking & tracing performance (latency & update rate)
First quantification of VE head and hand latency perception MoCS
*Compensation techniques: perceptually based design validation MoCS
Latency perception mechanism: direct time vs. 1image “slip” MoL
How we perceive image “slip”’: displacement vs velocity AS
*Generalizability of perceptual threshold quantification AS

*Why we perceive image “slip” velocity

*Haptic-audio asynchrony thresholds AS



Latency/Asynchrony Studies
ADSP/ACD Group

*Phenomenon: Tracking & tracing performance (latency & update rate)
First quantification of VE head and hand latency perception MoCS
*Compensation techniques: perceptually based design validation MoCS
Latency perception mechanism: direct time vs. image “slip” MoL
How we perceive image “slip”’: displacement vs velocity AS
*Generalizability of perceptual threshold quantification AS

*Why we perceive image “slip” velocity

*Haptic-audio asynchrony thresholds AS



Definition

* Psychophysics:
— Area of psychology that employs specific
behavioral methods to study the relation

between the physical world and subjective
experience (after S. Lederman)

— Quantitative evaluation of perceptual
characteristics (e.g., sensitivity) as a function of
physical stimulus parameters

« Empirical, Analytical, Theoretical




The Questions

What 1s 1t?

— A priori; qualitative

Is it there?

— Absolute threshold (RL)

How different 1s 1t [than standard]?
— Differential threshold (DL)

How much is there?
— Magnitude estimation



Why Psychophysics for/in VE?

* Quantify perceptual tolerances that are relevant to
Virtual Environment (VE) system use

— Establish guidelines and specifications for the design,
implementation, and effective deployment of VE
systems and interfaces

« Ultimately, to use appropriately implemented and
well calibrated VE systems to rapidly prototype
psychophysical (and other performance) studies

 We want to measure human performance, not
system artifact!



(Classical) Psychophysical Methods

* Method of Adjustment

e Method of Constant Stimuli

 Method of Limits
— Staircases
— Up-down Staircases

— Adaptive Staircases



Method of Adjustment

* Observer adjusts a stimulus
— to exceed a threshold (RL): absolute threshold
— to match a standard (DL): difference threshold

« Example

— Manually (literally or figuratively) adjust an
apparatus setting (e.g., by turning a knob) until
a temporal or spatial (or other intensity)
separation 1s (or 1s no longer) {heard|felt|seen}
between sequentially presented stimuli



Method of Constant Stimuli

 Intervals presented
— N (noise)
» absence of stimulus, reference condition, standard
— S+N (signal plus noise)
 stimulus, probe condition

* Depending on the stimulus type, intervals are presented
— 1ndividually (single interval) for absolute threshold (RL)
* yes|no response
— pairs (two-interval)

 simultaneously in adjacent locations, sequentially in same or adjacent
location

» which interval is bigger|smaller?

— n-interval



Method of Constant Stimuli

* Response: Two Alternative Force Choice (2AFC)
* Q: Issignal (S) present?

» Other designs are possible Response
Yes No

w SN Hit Miss
-.g type Il error
IS
n N False Correct

Alarm | Rejection

type | error




Detection Theory: Internal Response

Criterion
“NO” “YES” .
]-q| Correct Qo (type | error
Rejection False ik )
@arm
N _
B (type Il error) - Hit | 1—P (power)
Miss / .

* Criterion 1s individual observer’s preference or

bias; depends on cost/pay-off



Discriminability: d” (d-prime)

* Assumptions CRITERION
N, S+N are Gaussian ;
. —4FAT
N, S+N have equal variance <Zy-




Discriminability: d” (d-prime)

* Assumptions CRITERION
N, S+N are Gaussian .,
N, S+N have equal variance ” 2|
* For Z (normal) distribution |
(o, = 1): | _
d =27Z,-Z¢, /Bl
< d’ >




Discriminability: d” (d-prime)

* Assumptions CRITERION
N, S+N are Gaussian .,
N, S+N have equal variance ” 2|
* For Z (normal) distribution
(0, = 1): _
d =27Z,-Z¢, /Bl
« Possibility of criterion (bias) ey
shift with constant d’ -l



ROC: Receiver Operating Characteristic
(AKA Relative Operating Characteristic)

|l
~ =
y

Increased d'—
improved discriminability



ROC: Receiver Operating Characteristic
(AKA Relative Operating Characteristic)

|l
~ =
y

Increased d'—
improved discriminability
(threshold d™> 1)



ROC: Receiver Operating Characteristic
(AKA Relative Operating Characteristic)

1 —

0.8 -

0.6 -

BETTER
04

p(H): p(s|S+N)

0.2 -

0

0 0.2 04 06 0.8
Increased d’— p(FA): p(sIN)

improved discriminability .
, ROC: p(H) vs p(FA
(threshold d'> 1) p’cgs z‘uncfig)n o)f d’



Example: Latency Discrimination
Constant Stimul1 Experiment [1]

Head Stationary

it sa T = {33, 100, 200} ms
At={16.7,33.3,...,116.7} ms
P
e Experiment Factors (3 X 7 levels)
Virtual Object () Image ?Iip
Motion Sensor__!i-‘{i:_f,ii'f) 2Ild COI’ldlthn
Lo T T+At
«— T —»|— At — g Z
E | 125 | 375
Reference ) "g — | S N
o
Probe <
7 — 375 125
Baseline Added — N S
(Pedestal) | Latency

Q (2AFC): Same or different? Randomized Stimulus Block




Example: Latency Discrimination

o
~
(&2}

Hit | False Alarm Rates
= )
w w

Hit/FA rates and d-prime

y- 4
Reference  Hits FA . Reference
33 ms * < 33 ms
| 100ms m O 3 4| 100ms
200 ms A A 200 ms

/

/ (0]
= 2

o s

/ Hits: 16 observations / point gol

/
P FA: 48 observations / point

B —F A 1

Subj: SME

0

20

Subj: SME

40 60 80 100 120 0

Added Latency (ms)

(One Observer)

20

40 60 80

Added Latency (ms)

100

120



Example: Latency Discrimination
Average Hit/FA rate and d-prime

0.5

Hit | False Alarm Rates

Added Latency (ms)

(8 Observers)

4
Re:;rence Hits FA Reference d
L e - 33 ms °
| 100ms u O T 3 +— 100ms o
200 ms A A 200 ms A
(0)]
e
= 2
s
©
1 4
+1 std err +1 std err
T T T T 1 0 T T
20 40 60 80 100 120 0 20 40 60 80 100 120

Added Latency (ms)



Hit/FA Rates vs. Stimulus

* Ideally we want low and uniform p(FA)
— Reliability in performing the judgment task
— Constant criterion; no drift in bias
— d” depends on hit rate, p(H)

* p(H) as a function of stimulus intensity
— Psychometric function

» Thresholds and bias
— More later w/ Methods of Limits



(Truncated) Method of Limits

» Staircases (non-reversing) algorithm

— Define stimulus range

— Start high: descend o 10

until “Not Different” § -,
— Start low: ascend z pirerent Le

until “Different” gl s s

B AT 00% Threshold =i 4 2
* 50% threshold | 3
14 Not Dirrerent
o

Step Number



Example: Latency Discrimination
Staircase Experiment [2]

Input Head Motion
+16° Yaw

“Fixed” Virtual )
Object Image Slip
Stationary W
Motion Sensor
(6 DOF)

Reference >

Motion Sensor
(6 DOF)

«— T —»|l— At —

T = {33, 100, 200} ms

Experiment Factor (3 levels)

Probe >
Baseline Added
(Pedestal) | Latency

Staircases start either
LOW
At =0 ms (randomly 1 to 3 times)
and increase until “different”
or
HIGH
At={116.7,133.3,150.0} ms (randomly selected)
and decrease until “not different”

Q (2AFC): Same or different?




Example: Latency Discrimination

Staircase Experiment

Threshold (50%) = 77.5 ms

runs; 131 pts

Ref: 33 ms
Pace: const

Run# —>

Response

Diff

Same

Staircase
Q
2 | 3
a <
A
AV

Detection Rate

1.00

0.75

0.50

0.25

0.00

S—@
[ ]
[
[ ]

Obs: JM
= Ref: 33 ms
@ Pace: const

‘ . T T T T
o - w (8] (0)] (0] - -l —
o o © ©o o 0w 9 =2 w
~ w o ~ w o o w
o =~ W

Added Latency (ms)

0osL



Example: Latency Discrimination
Staircase Experiment

 Staircases (non-reversing)
— Each staircase yields a termination level
— From which can reconstitute raw staircase data

— Construct p(H) as a function of stimulus
intensity



Method of Limits

* Simple truncated method of limits up—down
method or :

Xne1 = Xn = 5(2 Ln— 1)
{missl|hit}: z. = {0]1}

* Fixed step size o

* Avoids stimulus presentation far above and
below threshold



Method of Limits

Up-Down Staircases

* Transformed Up-Down staircases w/ or w/o
adaptation

* 1 Up-N Down staircase theoretical convergence
levels (“equilibrium™): 0.5=1-p(H)N
— 1U-1D: 50.0%
— 1U-2D: 70.7% (Transformed)
— 1U-3D: 79.4% (Transformed)

 Analytic relation of d” to equilibrium for 1U-ND
staircase and M-Alternative Force Choice

— Use d’ to help choose staircase method



Example: Asynchrony Discrimination
1U-2D Adaptive Staircase Experiment [3]

Auditory
& Stimulus

«— T —»|l— At —

Reference >
Probe >

Baseline Added
(Pedestal) | Latency

Hammer Tap
Auditory Stimulus

T ={7.2}ms

Q (2AFC): Which (1 or 2)
was “Reference”?

Staircases start either
LOW
At =0 ms
or
HIGH
At =256 ms

min(At) =4 ms




Example: Asynchrony Discrimination

1U-2D Adaptive Staircase Experiment
(70.7% Threshold)

@ Miss
. || 1.00 o ‘o) o)
‘] Reversa | % Obs: BH
1 Tone:1 ms
\ 0.75 -
256 1 lx; 288 of 302

224 4 Avg Threshold: 36.7 ms observations
C (8 Staircases)
192 { \
|

0.50 9{

Detection Rate

-
2]
o

O—

0.25

-
)
w

[{e]
(9]
L

+ std dev (binomial)

0.00

Added Delay (ms)
N

50 100 150 200 250 300
Added Delay (ms)

o2}

iy
—
o

N

S

Step #



Example: Asynchrony Discrimination
Adaptive Staircase Experiment

Each staircase Ideally converges to an equilibrium
level, corresponding to a theoretical threshold

— Drift (criterion shift) with extended duration
Construct p(H) as a function of stimulus intensity

Adaptive staircases
— Focus most quickly on region of interest

— More on region of interest in section on Psychometric
Function

Interleaved staircases
— Prevent observer tracking/prediction



Psychometric Function

* Construct a model (1.€., psychometric function)
describing relation between input stimulus
intensity and observer’s detection/discrimination
rate.

* Looking for best fit of given function to
experimentally measured data through
optimization of model parameter space.

* In the following illustrations, Gaussian
distributions (i.e., two parameter model: 1 and o)
are fitted to minimization of weighted least-
square (7(?) error.



Psychometric Functions

*Some typical monotonically increasing functions

. C e X _(tn)
Gaussian distribution: N(x;u,0)= ! j e 20"

\N2rmo e

1

Logistic distribution:  L(xa,f8.7)=

o — X
(ﬁ= 0/1.7;0(:/1) 1+exp( 3 j
(Gaussian approx.)
Y
Weibull distribution: vv“)(x;a,ﬂ,m—l-exp[(x 7) ]



Psychometric Function
» Features of the ogive
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and bias with respect to for psychometric function
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Psychometric Function

» Features of the ogive
— Point of Subjective Equality/Equivalence (PSE)

 Bias in observer’s response
e Criterion dependent
* Question posed as a source of bias

— Just Noticeable Difference (JND)

* Generally defined by 72 of stimulus difference
between 15t and 3 detection quartiles

* For symmetric functions, the amount of additional

stimulus difference to increase detection by 25%
from PSE

e JND i1s related to variance and is therefore a
statistical measure of detectability



Fitting a Psychometric Function

 Practical considerations (for standard normal
model)

— Transform data to standard normal (Z)
coordinates and apply linear regression

— Probability paper (cf. semi-log paper)

— Functional fit minimizing weighted error of fit to
data

« Weighted by binomial standard error for fitted model
(Probit with. y¥? error/model)

— “Finger error”:
* Rates of guessing (p,); rates of lapsing (p))
 Alleviates problem of P=0or 1, 1.e., Z — —o0 or ©
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Detection

100

75

50

25

Psychometric Functions
Constant Stimul1 Study [1]

o=
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| PSE =436 ms Al PSE =50.0 ms oLl PSE =413 ms
JND =191 ms JND =245 ms % JND = 442 ms
r=.998 | 2 r=0986 r=0974
i

7 &
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added latency (ms) added latency (ms) added latency (ms)

Fitted to Cumulative Gaussian Distribution



Detection Rate (%)
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Psychometric Functions
Staircase Studies
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Just-Noticeable Differences (JND): 12 Observers
[2] HFES (2003)

JND (ms)
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10
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-4 Constant — -0- Random
)

f 15

+ 1 SE m

. -
- = 10

()]

prd

)
5

N = 6 observers

0

33 100 200
Reference Latency (ms)

Base:

Group X Epoch X Base:

20 -

Group 2

-~ Random —> -e- Cons

I et

tant

\

—

+1SE

N=6o

bservers

33 100 200

Reference Latency (ms)

F(2,20)=4.044 p< .022

F(2,20)=4.866 p< .019



Summary Comments on Methods

* Method choice should depend on objectives

e Use Method of Constant Stimuli first, when have
insufficient knowledge of detection capacity

— Measure d-prime and FA rates
— Time-consuming (inefficient)

* Method of Limits w/ U-D Adapting Staircases

— Can select U-D ratio to concentrate data in region of
interest
 Efficient (fewer observations than Constant Stimuli)

— Does not measure FA rate
« Has a prescribed d” for given M-alternative forced choice



Summary Comments on Methods

Method choice should depend on objectives

Use Method of Constant Stimuli first, when have
insufficient knowledge of detection capacity

— Measure d-prime and FA rates
— Time-consuming (inefficient)

Method of Limits w/ U-D Adapting Staircases

— Can select U-D ratio to concentrate data in region of
interest

 Efficient (fewer observations than Constant Stimuli)

— Does not measure FA rate
« Has a prescribed d” for given M-alternative forced choice

Caveat: Pure perception experiments may be far

removed from ecological experience—i.e., detached
from realistic action and task performance
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Purpose and Human Performance assessment

The purpose of a human performance assessment within a
virtual environment is to determine whether the virtual
environmental users are able to realize the goals and expecta-
tions they bring upon entering it without unacceptable costs
and risks.

Seek information that is
1. True
2. Reliable
3. Valid
4. Knowably generalizeable
5. Task appropriate



Exhortation #1

Think and Argue Causally
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Explanatory Display of Orbiter O-ring Damage

O-ring damage

index
12
°
SRM 15
8
Expected temperature SRM 22

4 range for Challenger launch ¢ @

e bt

25 30 35 40 45 50 55 60 65° 70 75 80 85
Temperature (°F) of field joints at time of launch

( after Tufte, 1997)



Exhortation #2

Consider Alternative
Investigative Approaches



Investigative Techniques
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Exhortation #3

Behavioral
“Measurements” Sometimes Yield
Surprising Paradoxes



Lickert Scale Opinion Assessment l:questionnaire

User interface options: option layout in menus

Fixed Static Match Dynamic Matching
Fixed menu Usage frequency Usage frequency
sequence adjusted menu sequence:

menu sequence dynamically adjusted
 Written instructions, training

» laptop based data collection
e repeated measures, randomized presentation, order balancing, +

Awful, Perfect,
Totally No improvements
unusable needed
0 1 2 3 4

1.82



Lickert Scale Opinion Assessment Il: preference scores
Preference data (Interval:mean)

3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

Fixed Static  Dynamic

Mean 1.61 2.76 2.04
SE 0.2214 0.2359 0.2303



Lickert Scale Opinion Assessment [11: ANOVA

Sum of Squares
SSqr (total)
SSqgr between
SSqr within

Repeated measures ANOVA

Mean Square (variance)

43.3185
10.5103
32.8081

df

2
28

MSqr between
MSqr within(error)

F=
F(crit, .05)=
F(crit, .025)=

5.255
1.172

4.485
3.340
4.221



Lickert Scale Opinion Assessment IV: rank transforms
1 ~ least preferred 3 ~ most preferred

Preference data (Rank:median)

Fixed Static  Dynamic

Median 2 2 2
sterr SIQR 0.2031 0.2031 0.2031



K. Arrow Voting Paradox with Heterogeneous Ordinal Preferences

1~Yes “ “~No 5
Subjects A B C a<b b<c

1 3 1 2 1
2 1 2 3 1 1
3 2 3 1 1
4 1 2 3 1 1
5 3 1 2 1
6 2 3 1 1
7 1 2 3 1 1
8 3 1 2 1
9 1 2 3 1 1
10 2 3 1 1
11 3 1 2 1
12 2 3 1 1
13 3 1 2 1
14 1 2 3 1 1
15 2 3 1 1

Vote

Yes 10 10 5

No 5 5 10



Exhortation #4

A number 1s not always a number?!



Measurement

The systematic assignment of scale values, usually numbers,
to observations or objects with the purpose of representing
and modeling the measured entities.

Measurement

Function
f

Measures
(eq. Real Numbers)

Observations
(judgments)

Some desirable properties of measurements
1. Public
2. Unique
3. Knowably precise
4. Reliable & stable
5. Robust
6. Valid



Variety of Measurement Scales due to Stevens

Scale  Property  Symmetry
Operation
(inverse)

Nominal identity Replacement
(Replacement)

Ordinal rank Sorting

Quality 1
(Unsorting)

* Equivalence class

Interval unit Aggregation
(Disaggregation)
Quantity j
Ratio ZEero Multiplication
(Division)

(Stevens, 1946)



The Meaning of an Equivalence Class

(Ellis, 1996)



A

Equivalence Classes and Explanation

Presence measure

A

Consequent Phenomenon

| f%i




Measurement Scales and Appropriate Statistics

Scale Property Allowable Associated Statistics
Transformations  (Centeral tendency, dispersion, correlation)

Nominal identity = Renaming Mode = max[frequenc(x;)]
Index of variety = - = prob(x, )log(prob(x,)) (bits)
Contingency correlation [ X2 NG Z
. _ Y N®k-1)
Ordinal rank Monotonic Median = percentile,, max(X”) = N(k D

transformation
Interquartile range = percentiles - percentlle282

Preserving order 6>
Rank order Spearman correlation _, __
N? - N
Friedman ANOVA
: : > X
Interval unit Linear transformation Mean _ T _
; i N Z(Xi - X)?
preserving differences Standard deviation. -3 B _
to a scale factor TN 2% =X)(%, =)
Product-moment correlation= JZ(Xi XIS V)
ANOVA ! !
Ratio  zero Nonlinear Transforma- pean
tions preserving ratios  standard deviation
to a scale factor. Product-moment correlation

ANOVA



Pros & Cons of Stevens’s Measurement Classification

Pros

1. Discourage use of measurement properties implicit in numerical
measurement but not necessarily supported by the measurement
technique. Tells what kinds of difference make a difference!

2. Reinforces due consideration of the assumptions underlying conventional
statistical processing, i.e. sampling, distribution, variance

3. Potential for algorithmic or heuristic control of data analysis.

4. Can be an aid for selecting appropriate statistics for analysis.

Cons
1. A. priori data typing may preclude serendipitous discovery.

2. Stevens’s scale categorization are absolute resulting in demoting to
lower scales resulting in loss of information

3. Statistics should be selected based on what kinds of questions we ask
of the data not properties of the data themselves.

4. Potential for algorithmic or heuristic control of data analysis.



Nominal Data: Cockpit Traffic Display Based Avoidance Maneuvers

3
3

Horiz. Vertical Mixed Row Sum

Distribution Counted 76 2 18 96
Ho 32 32 32 96
108 34 50 192
Expected freq. f,, allf,>>5 Horiz. Vertical  Mixed Row Sum
Counted 54 17 25 96
Cellfreq - ( R;)-\:)V;l:m . C;)(I)?:lm ) TotaIJ Ho 54 17 25 96
108 34 50 192
Horiz. Vertical Mixed Row Sum
N (0,—€)* Counted 8.963 | 13.235 1.96 | 24.158
- Z e Ho 8.963 13.235 1.96 | 24.158

Xsqr(2)=  48.317

48.317 > 13.82, critical %°(2)@ p < 0.001



Spearman Rank Order Correlation: r,

Measure of correlation for data that are only meaningful in terms of order, derived
from the standard product moment correlation, r, i.e. r, = r of the data reduced to
ranks for N pairs of correlated variables x, y, with mean ranks X and Y and rank

differences d.. ranks
COV(>{\Y) Z(X. R0 m
" ar(var(y) JZ<x X2V

definition

62, _TIN-2
5T TNINT —D) N

> N >>10




Spearman Rank Order Correlation: r,

Modified Subjective
Subjects Cooper-Harper Stability
1 4.0 3.0
2 4.0 1.5
3 4.2 Ties are assigned
4 3.5 the average of
5 4.0 ranks otherwise
6 4.0 assigned.
7 6.0 6.0
8 4.0 3.7
9 5.0 3.0
10 5.2 3.0
11 4,7 3.0
12 4.0 4.5
r=0.425ns r=0.625% df=10,

Mod C/H SS
rank rank
4.5 {
4.5 2.5
8.5 4

1 2.5
4.5 V4
4.5 1
12 12
4.5 10
10 {
11 V4
8.5 7
4.5 11

*crit(0.05)=0.576



Single Factor ANOVA

Subdivisions of a random selection of sample statistics should
provide estimates of the same population parameter if the classifi-
ation into subgroups has no effect on subgroup statistics.



Example of One way Independent Groups ANOVA

Strategy: estimate a population statistic ( a variance) two different
different ways so that if H, is true the ratio of these estimates will be 1.
Significant deviations from 1, refute H,, given assumption of random
sampling, normal distribution, homogeneity of variance.

Notation
Groupl Group2 ~  Groupk
X11 X1 2
X21 X2,2
X3 1 X3’2
Xn2.2
Group means Xn1,1 - Grand Mean X
; X %2 2ni =N

1
df=n,-1 df=n,-1 etc df =N -1



One-way ANOVA: Partitioning Sums of Squares (SS) and Definition
of Mean Squares (MS) variance estimates (R. Fisher)

For the jth group
25 (x5 - X)2= 2 (% -X)2 + 20 (X - X2+ 2 (X - X) 25 (x;;-X)) sar, sum
2 (X - X)2= 24 (X;; -X;)? + n; (X; - X)?  summation of constant, dev sum to 0

ZJZI (Xij - X)?= 2}2; (X -X;)* + Zj n; (X - X)? sum over k groups

Total SS =SS

within groups t SSbetween groups definition
df =k-1

I\/ISWithin = SSWithin /dfwithin, I\/ISbetween: SSbeween /dfbewtween definition

between

F statistic with k-1, N-k degrees of freedom= MS, .o, /| MS

within



Independent Groups ANOVA

A B -

F= 5.464
F(crit, 0.05) = 3.592



Example of Friedman Nonparametric ANOVA

Lickert Scale Opinion Assessment IV: rank transforms

1 ~ least preferred 3 ~ most preferred

Subjects A B C J=3

1 3 1 2

2 1 2 3

3 2 3 1

4 1 2 3

5 3 1 2

6 2 3 1

7 1 2 3

8 3 1 2

9 1 2 3

10 2 3 1

11 3 1 2

12 2 3 1

13 3 1 2

14 1 2 3

15 2 3 i .
K: 15 e 0.0 33’ NS
T 30 30 30
17 0< 72 <K(I-1), df = J-1,

ZTiZ —3K(J+1) IfJ>3andK>9, use y?

2
Ar =
KI(J+1) Otherwise use tables for y.”



Nonparametric Statistics: Pros & Cons
Pros

1. No assumed population normality or homogeneity of variance.

2. Even data that may be higher order than ordinal may be evaluated
with relaxed statistical assumptions.

3. Some nonparametric tests may be used with very small sample sizes
(~5) and provide exact probabilities (e.g. binomial test)

4. Nonparametric tests may be applied to nominal data for which there
are no alternatives.

Cons

1. Nonp Power-efficient of tests= (100) Na/Ns

S8MP N = Observations for given power for testa
2.Nonp Ng = Observations for the same power for tests 3
(e.g.
3. Converting data to ranks throws away scientifically interesting
ordinal or ratio information.



Some Heuristics for Behavioral Experimentation

In General
e Statistics are ideally descriptive and reinforce results evident by plots and
model fits, the goals of an experiment are data and models, not statistics.

 Review handbooks/design and user performance reference material before
starting.

About Methods
 Placebo and Hawthorne effects are real: consider a variety of control groups.

 Use balanced independent groups for major independent variables when
possible, distribute group assignment over experimental run.

 Evaluate behavior related to closed-loop performance.

 Check statistical assumptions when possible, i.e. normality, at least
unimodality, symmetry and equality of variance.

About Results and Conclusions
 Results should not be dependent upon a specific measurement scale

» Results should be robust to exclusion of outliers.

o Statistical conclusions should not depend upon a specific analytic approach.
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