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Schedule

1:30 - 3:10 PM 100 minutes Experimental Design and Analysis Part |

3:10 - 3:45 PM 35 minutes Coffee Break

3:45 - 5:15 PM 90 minutes Experimental Design and Analysis Part Il



Motivation and Goals

 Course attendee backgrounds?

o Studying experimental design and analysis at

Mississippi State University:

— PSY 3103 Introduction to Psychological Statistics
— PSY 3314 Experimental Psychology

— PSY 6103 Psychometrics

— PSY 8214 Quantitative Methods In Psychology Il
— PSY 8803 Advanced Quantitative Methods

— |IE 6613 Engineering Statistics |

— |E 6623 Engineering Statistics Il

— ST 8114 Statistical Methods

— ST 8214 Design & Analysis Of Experiments

— ST 8853 Advanced Design of Experiments |

— ST 8863 Advanced Design of Experiments Il

e 7 undergrad hours; 30 grad hours; 3 departments!



Motivation and Goals

* What can we accomplish in one afternoon?

» Study subset of basic techniques

— | have found these to be the most applicable to
HCI experiments

 Focus on intuition behind basic techniques

« Become familiar with basic
concepts and terms

— Facilitate working with collaborators from
psychology, industrial engineering, statistics, etc.



Outline

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
* Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments



Why Human Subject (HS) Experiments?

Graphics hardware / software more mature

Focus of field:
— Implementing technology — using technology
— Trend at SIGGRAPH
— Trend at IEEE Virtual Reality

— Called for in NIH-NSF Vis Research Challenges Report [Johnson
et al. 06]

Increasingly running HS experiments:

— How do humans perceive, manipulate, cognate with
CG-mediated information?

— Measure utility of visualizations for application domains

HS experiments at Visualization:

Year Vis Papers % Info Vis papers %
2006 8/63 13% 2/24 8%




Logical Deduction vs. Empiricism

* Logical Deduction
— Analytic solutions in closed form
— Amenable to proof techniques
—Much of computer science fits here

— Examples:
 Computability (what can be calculated?)
« Complexity theory (how efficient is this algorithm?)

 Empirical Inquiry
— Answers questions that cannot be proved
analytically
— Many of the natural sciences fall into this area

— Antithetical to mathematics, computer science



What is Empiricism?

 The Empirical Technique
— Develop a hypothesis, perhaps based on a theory
— Make the hypothesis testable
— Develop an empirical experiment
— Collect and analyze data
— Accept or refute the hypothesis
— Relate the results back to the theory
— If worthy, communicate the results to your community

o Statistics:

— Foundation for empirical work; necessary but not
sufficient

— Often not useful for managing problems of gathering,
interpreting, and communicating empirical information.



Where is Empiricism Used?

« Humans are very non-analytic

 Fields that study humans:
—Psychology / social sciences
— Industrial engineering
— Ergonomics
—Business / management
—Maedicine

* Fields that don’t study humans:
— Agriculture, natural sciences, etc.

« Computer Science:
—HCI
— Software engineering



Experimental Validity

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
* Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Designing Valid Empirical Experiments

 Experimental Validity

—Does experiment really measure what we want it
to measure?

— Do our results really mean what we think
(and hope) they mean?

— Are our results reliable?

 If we run the experiment again, will we get the same
results?

« Will others get the same results?

 Validity is a large topic in empirical inquiry

11



Experimental Variables

* Independent Variables
—What the experiment is studying

— Occur at different levels
 Example: stereopsis, at the levels of stereo, mono

— Systematically varied by experiment

 Dependent Variables
—What the experiment measures

— Assume dependent variables will be effected by
independent variables

— Must be measurable quantities

 Time, task completion counts, error counts,
survey answers, scores, etc.

« Example: VR navigation performance, in total time
12



Experimental Variables

* Independent variables can vary in two ways
— Between-subjects: each subject sees a different level of
the variable
« Example: 2 of subjects see stereo, > see mono

— Within-subjects: each subject sees all levels of the
variable

« Example: each subject sees both stereo and mono

« Confounding factors (or confounding variables)
— Factors that are not being studied, but will still affect
experiment
« Example: stereo condition less bright than mono condition

— Important to predict and control confounding factors, or
experimental validity will suffer

13



Experimental Design

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Experimental Designs

« 2 x 1 is simplest possible design, with one independent

variable at two levels:

level 1 stereo

level 2 mono

* Important confounding factors for within subject variables:
— Learning effects
— Fatigue effects

« Control these by counterbalancing the design

— Ensure no systematic variation between levels and the order
they are presented to subjects

Subjects 1st condition 2"d condition

1,3,5,7 stereo mono

2,4,6,8 mono stereo e




Factorial Designs

 nx 1 designs generalize the number of levels:

VE terrain type

flat
hilly
mountainous

* Factorial designs generalize number of independent variables
and the number of levels of each variable

« Examples: n x m design, n x m x p design, etc.
* Must watch for factorial explosion of design size!

3 x 2 design: Stereopsis

VE terrain type stereo mono
flat
hilly
mountainous

16



Cells and Repetitions

e Cell: each combination of levels

* Repetitions: typically, the combination of levels at
each cell is repeated a number of times

Stereopsis

VE terrain type stereo mono

flat N
hilly
mountainous

 Example of how this design might be described:
— “A 3 (VE terrain type) by 2 (stereopsis) within-subjects
design, with 4 repetitions of each cell.”

— This means each subject would see 3 x 2 x 4 = 24 total
conditions

— The presentation order would be counterbalanced

17



|

Counterbalancing

 Addresses time-based confounding factors:
— Within-subjects variables: control learning and fatigue effects

— Between-subjects variables: control calibration drift, weather,
other factors that vary with time

 There are two counterbalancing methods:

— Random permutations
— Systematic variation

1 2

2 1
2X2

« Latin squares are a very useful and popular technique

|

2

R Wk W

2

6 x 3 (there is no 3 x 3 that has all 3 properties)

3
1
2
2
3

1

1

2
3
4

2 3
4 1
1 4
3 2
4x4

A

3
2
1

e Latin square properties:

— Every level appears in
every position the same
number of times

— Every level is followed by
every other level

— Every level is preceded
by every other level
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Counterbalancing Example

o “A 3 (VE terrain type) by 2 (stereopsis) within-
subjects design, with 4 repetitions of each cell.”

 Form Cartesian product of Latin squares
{6 x 3} (VE Terrain Type) ® {2 x 2} (Stereopsis)

» Perfectly counterbalances groups of 12 subjects

Subject Presentation Order

1 1A, 1B, 2A, 2B, 3A, 3B
1B, 1A, 2B, 2A, 3B, 3A
2A, 2B, 3A, 3B, 1A, 1B
2B, 2A, 3B, 3A, 1B, 1A
3A, 3B, 1A, 1B, 2A, 2B
3B, 3A, 1B, 1A, 2B, 2A
1A, 1B, 3A, 3B, 2A, 2B
1B, 1A, 3B, 3A, 2B, 2A
2A, 2B, 1A, 1B, 3A, 3B
2B, 2A, 1B, 1A, 3B, 3A
3A, 3B, 2A, 2B, 1A, 1B
3B, 3A, 2B, 2A, 1B, 1A
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Experimental Design Example #1

trial number 1 ———— 216[217 v 432
ground plane on off

%
stereo on off on off
drawing style wire fill wire+fill

+ || alpha const [ decr | const | decr | const | decr

o |s|lols|ols|ols|0s]|0] 5

i i c | Qlc|Q|lc|L]lc|Q]lc|L]|lc]|@
Intensity sls(s|s|s|elsl8|c|s|8]|

target position middle far

rp?

repetition

1 sv = systemically varied, 2rp = randomly permuted

« All variables within-subject
From [Living et al. 03]



Experimental Design Example #2

% | Stereo Viewing on off
(>
3
o
= | Control Movement rate position rate position
»
c
R=J
o Frame of ego | exo | ego | exo | ego | exo | ego | exo
-+ | Reference g g g 9

o
< | § |cave < < < : = < = =
= | 3 g |l |& |8 |& |8 |&|3&
2 | £ |wall 3 & 3 8 a 8 8 8
= @ = = e - o - -+ -+
o0 o 7 (7 7 7 7 7 7 7
c U - ()| o - - N N N
o = workbench | | | > = N N N
o g.. o P - | | | | |

N N N N

= | 3 |desktop o S N 0 R

 Mixed design: some variables between-subject,

others within-subject.

From [Swan et al. 03]
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Gathering Data

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments

22



Gathering Data

 Workhorse measures:
— Response time, error counts

 Additional measures:
— Critical incidents

— 6 degree-of-freedom tracker trajectory
(head, hand)

— Answers scored by experts
— Questions answered on Likert scale:

The majority of the time | was using the interface, | was thinking about

my problem domain, as opposed to how to operate the system:

strongly agree neutral disagree s_trongly
agree disagree

23




Gathering Data (con’t)

« Example of a cognitive analysis:
— Subject uses think out loud protocol
— Session videotaped, perhaps logged
— Session divided into brief intervals
— Each interval labeled with cognitive state
— Counts of cognitive states are analyzed
— Can be combined with eye tracking data

* This list has only scratched the surface...

Cognitive analysis from [Wu et al. 96]

24



Graphing Data

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments

25



Types of Statistics

* Descriptive Statistics
— Describe and explore data

— Summary statistics:
many numbers — few numbers

— All types of graphs and visual representations

— Data analysis begins with descriptive stats
 Understand data distribution
 Test assumptions of significance tests

 Inferential Statistics
— Detect relationships in data
— Significance tests

— Infer population characteristics from sample
characteristics

26



Exploring Data with Graphs

 Histogram common data overview method
median = 59.5 mean =60.26 mode = 62

60 |~

50

Frequency
] OV B
S S S

[a—y
o

37 42 47 52 57 62 67 72 77 82 87 92 97 102 107 112 117 122 127
Reaction time (Hundredths of a second)

From [Howell 02] p 21
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Classifying Data with Histograms

0.04

0.03

0.02

0.01

-4.0

0.07
0.06
0.05
0.04
0.03
0.02
0.01

Score

(a) Normal

10

Score

From [Howell 02] p 28

(c) Negatively skewed

20

25

0.05
0.04
0.03
0.02
0.01

Score
(b) Bimodal

0.07 -
0.06
0.05 §
0.04
0.03 =
oo b
0.01 =

._ . . i = ; m >
Score
(d) Positively skewed
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From [Howell 02] p 21, 23

(PUO23s © JO SYIPAIPUNY ) IWI} UOTIILIY
LTI CTL LITTIT LOT TOT L6 T6 L8 T8 LL TL L9 T9 LS TS Ly T LE

Stem-and-Leaf:

Histogram From Actual Data

Frequency
o w = o
< < < © Raw Data Stem Leaf
1 | 3637 383839393940 3 | 67
40 40 40 41 41 41 42 42 3. 88999
42 43 43 43 43 43 44 44 4% 0000111
44 44 44 45 45 45 45 45 4 22233333
45 46 46 46 46 46 46 46 4f 44444555555
46 46 46 46 47 47 47 47 4s 66666666666777777777
47 47 47 47 47 48 48 48 4. 888899999
48 49 49 49 49 49 50 50 5* 00000111111111111
50 50 50 51 51 51 51 51 5t 222222222233333333
51 51 51 51 51 51 51 52 5f 4444445555555
52 52 52 52 52 52 52 52 5s 66666666667777777
52 53 53 53 53 53 53 53 5. 8888RB8ER’EERIY999999999
53 54 54 54 54 54 54 55 o* 0000000000001 1111111111
55 55 55 55 55 55 6t 222222222222223333333333
of 444444455555555
6s 666666667777T77TT777777
6. 889999999
T* 01111
Tt 22222222333
7t 44444455
7s 666677
7. 88899
g 00011
8t 2333
8f 5
8s 67
8. 8
o* 0
Ot
of 4455
9s
9. 8
High 104; 104; 125

FIGURE 2.4 Stem-and-leaf display for reaction time data
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Histogram From Actual Data

Stem-and-Leaf:

Final Recorded Grades

1

O© 00 00 01 ©O O O O O

w
=

3% F
0% F
0% F
0% F
0% F
0% F
16% D
26% C
26% B
29% A

©Co~NO O h~WNPEO

O

34788
12233469
01244699
001123346

Grades from my Analysis of Algorithms class
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T

1.51QR)

Interquarile
Rance {IQR)

i

1.51QR)

Boxplot

O =——— Maximum obkservation
___D____ w— Upper fence {not crawn)

1 5(1QR)above 75 Ppercertie

T =— Maximum obkservation kelow upper fence
75 P percentile

+ =—— Mean (specifed with SYMBOL1 stement)
Median
25 hpercentile

1

~~—— Minimum observaion

- Lower fence (not crawn)
1 5(1GR)below 25 P percertile

Distance (meters)

Perceived Target Distance vs Referent Distance

50
+ Actual Referent Distance )
¢ Perceived Mean Target Distance =
400  4Subjects; 640 Data Points - N
30
20
10
0-

534 1092 1650 22.08 27.66  33.24  38.82
Actual Referent Distance (meters)

« Emphasizes variation and relationship to mean
 Because narrow, can be used to display side-by-

side groups

Data from [Swan et al. 06]
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Example Histogram and Boxplot from Real Data

min value 2\5th 7\5th upper fence max values (outliers)

median = 1453 | C
0.30 T j_

0.25
mean = 2355

0.20 1

Frequency
o
o

0.10 1

; mm

600 2400 4200 6000 7800 9600 11400 13200 15000
RT_Milliseconds

Data from

[Living et al. 03] 32



We Have Only Scratched the Surface...

» There are a vary large number of graphing techniques

» Tufte’s [83, 90] works are classic, and stat books show many
more examples (e.g. Howell [03]).

RESOLUTION
0 CELL

TIME ( Msec)

125 kHz

N And plenty of bad examples!

FREQUENCY

Lots of good examples... From [Tufte 83], p 134, 62
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Descriptive Statistics

 Empiricism
 Experimental Validity
« Usability Engineering
 Experimental Design
 Gathering Data

* Describing Data

— Graphing Data
— Descriptive Statistics
 Inferential Statistics
— Hypothesis Testing
— Hypothesis Testing Means
— Power
— Analysis of Variance and Factorial Experiments
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Summary Statistics

 Many numbers — few numbers

 Measures of central tendency:
— Mean: average
— Median: middle data value
—Mode: most common data value

 Measures of variability / dispersion:

— Mean absolute deviation
—Variance
— Standard Deviation

35



Populations and Samples

 Population:

— Set containing every possible element that we
want to measure

— Usually a Platonic, theoretical construct
—Mean: y Variance: 0% Standard deviation: o

« Sample:

— Set containing the elements we actually
measure (our subjects)

—Subset of related population

—Mean: X Variance: s2 Standard deviation: s
Number of samples: N

36



Summary Statistics

Mean: Mean absolute deviation:
_ X X —X
g XX nad.- 2 X
N N
Variance: Standard deviation:
v m—r
N —1 >=
- N -1
2  Standard deviation uses same units as
o2 = Z(X —,u) samples and mean.
N e Calculation of population variance o? is

theoretical, because y almost never
known and the population size N would
be very large (perhaps infinity). 37



Sums of Squares, Degrees of Freedom,
Mean Squares

 Very common terms and concepts

—\
X — X
o2 _ Z( ) _ SS _sums of squares _ MS (mean squares)
N -1 df  degreesof freedom

 Sums of squares:
— Summed squared deviations from mean

* Degrees of freedom:

— Given a set of N observations used in a calculation, how
many numbers in the set may vary

— Equal to N minus number of means calculated
 Mean squares:

— Sums of squares divided by degrees of freedom
— Another term for variance, used in ANOVA 38



Hypothesis Testing

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Hypothesis Testing

* Goal is to infer population characteristics
from sample characteristics

30

(]
=

population

\/

Frequency

[

—

o
n

T~

— | samples

_— h' -_— =

G A o % o Sy s T G B Iy Jy Jg O O % 25 2 & &

From [Howell 02], p 78

~
0 0 GQfOGOOJGO

Std. Dev = 10.56
Mean = 49.1]
N =289.00
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Testable Hypothesis

* General hypothesis: The research question
that motivates the experiment.

* Testable hypothesis: The research
question expressed In a way that can be
measured and studied.

 Generating a good testable hypothesis is a
real skill of experimental design.
— By good, we mean contributes to experimental
validity.
— Skill best learned by studying and critiquing

previous experiments. »



Testable Hypothesis Example

General hypothesis: Stereo will make people more effective
when navigating through a virtual environment (VE).

Testable hypothesis: We measure time it takes for subjects
to navigate through a particular VE, under conditions of
stereo and mono viewing. We hypothesis subjects will be
faster under stereo viewing.

Testable hypothesis requires a measurable quantity:
— Time, task completion counts, error counts, etc.

Some factors effecting experimental validity:

— Is VE representative of something interesting
(e.g., a real-world situation)?

— Is navigation task representative of something interesting?

— Is there an underlying theory of human performance that can
help predict the results? Could our results contribute to this
theory? 42



What Are the Possible Alternatives?

- Let time to navigate be p_: stereo time; y_: mono time
— Perhaps there are two populations: y, -y =d

Ms My (they could be s My (they could
close together) be far apart)

— Perhaps there is one population: y, -y, =0

I"sium 43



Hypothesis Testing Procedure

1. Develop testable hypothesis H,: y. -y =d
— (E.g., subjects faster under stereo viewing)

2. Develop null hypothesis H,: y.— ., =0
— Logical opposite of testable hypothesis

3. Construct sampling distribution assuming H, is true.

4. Run an experiment and collect samples; yielding sampling
statistic X.

— (E.g., measure subjects under stereo and mono conditions)

5. Referring to sampling distribution, calculate conditional
probability of seeing X given H,: p( X | H, ).
— If probability is low (p < 0.05, p < 0.01), we are unlikely to see X
when H, is true. We reject H,, and embrace H,.

— If probability is not low (p > 0.05), we are likely to see X when
H, is true. We do not reject H,,.

44



Data from [Swan et al. 03]

Example 1: VE Navigation with Stereo Viewing

1. Hypothesis H;: y.—u_ =d
— Subjects faster under stereo viewing.

2. Null hypothesis H,: uy.—p.. =0
— Subjects same speed whether stereo or mono viewing.

3. Constructed sampling distribution assuming H, is true.

4. Ran an experiment and collected samples:
— 32 subjects, collected 128 samples
— X, =36.431 sec; X, = 34.449 sec; X, — X, =1.983 sec

5. Calculated conditional probability of seeing 1.983 sec given
H,: p( 1.983 sec | H,) = 0.445.

— p = 0.445 not low, we are likely to see 1.983 sec when H, is
true. We do not reject H,,.

— This experiment did not tell us that subjects were faster under
stereo viewing.
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Data from [Living et al. 03]

Example 2: Effect of Intensity on AR
Occluded Layer Perception

. Hypothesis H,: y.—pu,=d

— Tested constant and decreasing intensity. Subjects faster
under decreasing intensity.

. Null hypothesis H,: y.—u,=0

— Subjects same speed whether constant or decreasing intensity.

. Constructed sampling distribution assuming H, is true.

. Ran an experiment and collected samples:

— 8 subjects, collected 1728 samples
— X, =2392.4 msec; X, =2339.9 msec; X_—- X, = 252.5 msec

. Calculated conditional probability of seeing 252.5 msec

given H,: p( 252.5 msec | H,) = 0.008.

—p =0.008 is low (p < 0.01); we are unlikely to see 252.5 msec
when H, is true. We reject H,, and embrace H,.

— This experiment suggests that subjects are faster under
decreasing intensity.

46



Some Considerations...
» The conditional probability p( X | H,)

— Much of statistics involves how to calculate this
probability; source of most of statistic’s complexity

— Logic of hypothesis testing the same regardless of how
p( X| H,) is calculated

— If you can calculate p( X | H, ), you can test a hypothesis

e The null hypothesis H,
— H, usually in form f(u,, y,,...) =0

— Gives hypothesis testing a double-negative logic:
assume H, as the opposite of H,, then reject H,

— Philosophy is that can never prove something true, but
can prove it false

— H,; usually in form f(u,, y,,...) # 0; we don’t know what
value it will take, but main interest is that it is not 0

47



When We Reject H,

 Calculate a = p( X | H,), when do we reject H,?
— In psychology, two levels: a < 0.05; a < 0.01
— Other fields have different values

« What can we say when we reject H, at a = 0.008?

— “If H, is true, there is only an 0.008 probability of getting
our results, and this is unlikely.”

e Correct!

— “There is only a 0.008 probability that our result is in
error.”

* Wrong, this statement refers to p( H, ), but that’s not what we
calculated.

— “There is only a 0.008 probability that H, could have been
true in this experiment.”

« Wrong, this statement refers to p( H,| X'), but that’s not what
we calculated.

48



When We Don’t Reject H,

« What can we say when we don’t reject H, at
a = 0.4457
— “We have proved that H, is true.”

— “Our experiment indicates that H, is true.”

* Wrong, statisticians agree that hypothesis testing cannot
prove H, is true.

o Statisticians do not agree on what failing to reject
H, means.

— Conservative viewpoint (Fisher):

 We must suspend judgment, and cannot say anything about
the truth of H,,.

— Alternative viewpoint (Neyman & Pearson):
« We “accept” H,, and act as if it’s true for now...
« But future data may cause us to change our mind

From [Howell 02], p 99
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Hypothesis Testing Outcomes

Reject H, Don’t reject H,
correct wrong
H, false a result! type Il error
p=1-B=power pP=p
wrong correct
H, true type | error (but wasted time)
p=a p=1-a

« a=p(X| H,), so hypothesis testing involves calculating a

 Two ways to be right:
— Find a result
— Fail to find a result and waste time running an experiment
« Two ways to be wrong:
— Type | error: we think we have a result, but we are wrong
— Type Il error: a result was there, but we missed it 50



When Do We Really Believe a Result?

 When we reject H,, we have a result, but:
—It’s possible we made a type | error

—It’s possible our finding is not reliable
« Just an artifact of our particular experiment

« So when do we really believe a result?

— Statistical evidence

o alevel: (p<.05, p<.01, p<.001)
« Power

— Meta-statistical evidence

* Plausible explanation of observed phenomena

— Based on theories of human behavior:
perceptual, cognitive psychology; control theory, etc.

 Repeated results
— Especially by others

51



Hypothesis Testing Means

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments

52



Hypothesis Testing Means

« How do we calculate a =p( X | H, ), when X is a
mean?

— Calculation possible for other statistics, but most
common for means

 Answer: we refer to a sampling distribution

 We have two conceptual functions:
— Population: unknowable property of the universe

— Distribution: analytically defined function,
has been found to match certain population statistics

53



Calculating a = p( X | H, ) with
A Sampling Distribution

« Sampling distributions are analytic functions with area 1

* To calculate a = p( X | H,) given a distribution, we first
calculate the value D, which comes from an equation of the

form: Represents
_ — M assumption
D - (S|ze of effect: f (X )) that H, true
(variability of effect : f(s?,N)) a=area|D|
/

"D?

a=p(X| H,)is equal to:
— Probability of seeing avalue2| D |
— 2 * (area of the distribution to the right of | D |)

If H, true, we expect D to be near central peek of distribution

If D far from central peek, we have reason to reject the idea
that H, is true

D?
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A Distribution for Hypothesis
Testing Means

04

0.3

0.2

0.1

0 |

-4 -3 -2 -1 0 1 2 3 4

 The Standard Normal Distribution (u=0, c=1)
(also called the Z-distribution):

N(X;u,0)=

1
O\ 27T



The Central Limit Theorem

e Full Statement:

— Given population with (u, 0?), the sampling
distribution of means drawn from this
population is distributed (u, 02/N), where N is
the sample size. As N increases, the sampling
distribution of means approaches the normal
distribution.

 Implication:
— As N increases, distribution of means becomes

normal, regardless of how “non-normal” the
population looks.

 How big does N have to be before means
look normally distributed?

— For very “non-normal” data, N = 30.
56



Central Limit3Theorem in Action

030 —-—n=3
30 - _
= n=5
0.257
_ T 25 n=7
0.20 C:), n=15
O 20
)
0.15 B d:, 15
=
010 8 10
L
©600 2000 4200 6000 700 600 00 1900 15000 0 ‘ ‘ d B
RT_Millissconds 950 1950 2950 3950 4950 5950 6950
Time (Milliseconds)
Response time data set A; Plotting 100 means drawn from A at random
N = 3436 data points. Data without replacement, where n is number of
from [Living et al. 03]. samples used to calculate mean.

 This demonstrates:

— As number of samples increases, distribution of means
approaches normal distribution;

— Regardless of how “non-normal” the source distribution is! 57



The t Distribution

 In practice, when H,: y.—u,=0
(two means come from same population),
we calculate a = p( X | H,) from t distribution, not Z distribution

« Why? Z requires the population parameter o2, but o? almost
never known. We estimate o2 with s2, but s2 biased to
underestimate o2. Thus, t more spread out than Z distribution.

 tdistribution parametric: parameter is df (degrees of freedom)

y 1=z
\At = df, t distribution

same as normal
distribution

f(t)

58
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t-Test Example

* Null hypothesis H,: y.—pu =0
— Subjects same speed whether stereo or mono viewing.

 Ran an experiment and collected samples:
— 32 subjects, collected 128 samples
— ng, =64, X, = 36.431 sec, s, = 15.954 sec
—n,, =64, X =34.449 sec, s, =13.175 sec

— , 2

t(126) = f{s(xl)\l — X —0.766, 3;2) _ (n, _]r-])ss ‘;(nmz_l)sm
\/ (}/ }/ j s TNy —

 Look up £(126) = 0.766 in a t(126) Area of shaded

t-distribution table: 0.445 distribution regions: 0.445

 Thus, a=p(1.983 sec | H,) =
0.445, and we do not reject H,.

-0.766 0 0.766

59
Calculation described by [Howell 02], p 202



One- and Two-Tailed Tests

* t-Test example is a two-tailed test.

— Testing whether two means differ, no preferred direction of
difference: H,: y_. -y =d, either y.>pu_orpu <pu_

— E.g. comparing stereo or mono in VE: either might be faster

— Most stat packages return two-tailed results by default

* One-tailed test is performed when preferred direction of
difference: H,: u_ >

— E.g. in [Meehan et al. 03], hypothesis is that heart rate &
skin conductance will rise in stressful virtual environment

Area of shaded
region: 0.445

Area of shaded
regions: 0.445

0 0.139 -0.766 0 0.766

one-tailed test two-tailed test 60



Power

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Interpreting a, 8, and Power

Reject H, Don’t reject H,
a result! type Il error
H, false p=1-B = power p=p
H. t type | error wasted time
o true p=a p=1-a
« If H, is true: H, H,
— ais probability we make a
type | error: we think we have a power =
result, but we are wrong 1-8
o If H, is true:
— B is probability we make a
type Il error: a result was there,
but we missed it B
— Power is a more common term Mo M

than B8



Increasing Power by Increasing a

H, H,

* lllustrates a/ power
tradeoff

 Increasing a:
— Increases power
— Decreases type Il error
— Increases type | error

 Decreasing a: power
— Decreases power
— Increases type Il error
— Decreases type | error B

My M4
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Increasing Power by Measuring
a Bigger Effect

e If the effect size is
large:
— Power increases

— Type Il error
decreases

— a and type | error stay
the same

H,

H,

 Unsurprisingly, large
effects are easier to
detect than small
effects

-

M,

power
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Increasing Power by
Collecting More Data

H, H, H, H,

B

power

Ho Hy
* Increasing sample size (N):
— Decreases variance
— Increases power
— Decreases type Il error
— a and type | error stay the

same J B

 There are techniques that My M4

give the va_lue of N required e Here, effect size remains the same,
for a certain power level. but variance drops by half.
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Using Power

* Need a, effect size, and sample size for power:

power = f( a, [ty — 4|, N)

e Problem for VR / AR:

— Effect size |y, — y,| hard to know in our field
* Population parameters estimated from prior studies
« But our field is so new, not many prior studies

— Can find effect sizes in more mature fields

 Post-hoc power analysis:
effect size = | X, — X]
— Estimate from sample statistics

— But this makes statisticians grumble
(e.g. [Howell 02] [Cohen 88])
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Other Uses for Power

1. Number samples needed for certain power level:
N = f( power, a, |u, — py| or | X, — Xi|)

— Number extra samples needed for more powerful result
— Gives “rational basis” for deciding N [Cohen 88]

2. Effect size that will be detectable:
| — k4] = A N, power, a)

3. Significance level needed:
a = f{ |y — | or [X; — Xi|, N, power )

(1) is the most common power usage
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Arguing the Null Hypothesis

« Cannot directly argue H,: py. — ., = 0. But
we can argue that |y, — 4| < d.
—Thus, we have bound our effect size by d.

—If d is small, effectively argued null hypothesis.

From [Cohen 88], p 16 d
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Data from [Living et al. 03]

Example of Arguing H,

« We know GP is effective depth cue,
but can we get close with other graphical cues?

ground plane drawing style opacity intensity mean error*
on all levels both levels both levels 0.144
off wire+fill decreasing decreasing 0.111

*F(1,1870) =1.002, p = .317
Our effect size is d = .087 standard deviations

power( a=.05,d=.087, N=265) = .17

* Not very powerful. Where can our experiment bound d?
d( N = 265, power = .95, a=.05) = .31 standard deviations

 This bound is significant at a = .05, 8 = .05, using same logic as
hypothesis testing.
But how meaningful is d <.31? Other significant d’s:

37, 12, .093, .19

* Not very meaningful. If we ran an experiment to bound
d < .1, how much data would we need?

N( power = .95, a=.05,d=.1) =2600

» Original study collected N = 3456, so N = 2600 reasonable 69



Analysis of Variance and Factorial
Experiments

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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ANOVA: Analysis of Variance

* t-test used for comparing two means
— (2 x 1 designs)

« ANOVA used for factorial designs
— Comparing multiple levels (n x 1 designs)

— Comparing multiple independent variables
(n x m, n x m x p), etc.

— Can also compare two levels (2 x 1 designs);
ANOVA can be considered a generalization of a t-Test

* No limit to experimental design size or complexity

 Most widely used statistical test in psychological
research

« ANOVA based on the F Distribution;
also called an F-Test
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How ANOVA Works

H, likely H, likely
true false

—

Null hypothesis H,: y, = u, = u; = y,; H,: at least one mean differs
Estimate variance between each group: MS, . ccn,
— Based on the difference between group means
— If H, is true, accurate estimation
— If H, is false, biased estimation: overestimates variance
Estimate variance within each group: MS
— Treats each group separately
— Accurate estimation whether H, is true or false
Calculate F critical value from ratio: F=MS, .., / MS
— If F=1, then accept H,
— If F>>1, then reject H,

within

within
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ANOVA Uses The F Distribution

« Calculate a =p( X | H,) by looking up F critical value in
F-distribution table

* F-distribution parametric: F ( numerator df, denominator df)
* ais area to right of F critical value (one-tailed test)

e Fand tare distributions are related: F(1,q)=t(q)?
Probability density

!
A
1.51¢
Fs0,50
£ Desired
s upper-tail
1.0¢ F]ellﬁ -] area = «
Fyq
F
0.51
Corresponding
F critical value
0 . ~ = >
0 1 2

3 F, 4 values
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* Hypothesis H,:
—Platform (Workbench, Desktop, Cave, or

Wall) will affect user navigation time in
a virtual environment.

* Null hypothesis H,: u, = u, = .= M,

—Platform will have no effect on user
navigation time.

 Ran 32 subjects, each subject used
each platform, collected 128 data

55

Time (seconds)
N N w w H H [3)]
o (3, ] o (3, ] o (3, o

ANOVA Example

+ 95% Confidence Intervals

Workbench

Desktop Cave

points. Wall
Platform
Source SS df MS F
Between (platform) 1205.8876 3 401.9625 3.100* | 0.031
Within (P x S) 12059.0950 | 93 129.6677
*p <.05

* Reporting in a paper: F(3,93)=3.1,p<.05

Data from [Swan et al. 03], calculations shown in [Howell 02], p 471

74




Main Effects and Interactions

 Main Effect
— The effect of a single independent variable

— In previous example, a main effect of platform on user
navigation time: users were slower on the Workbench, relative

to other platforms

 Interaction
— Two or more variables interact
— Often, a 2-way interaction can describe main effects

Interaction

No interaction
- )
E 1 1 \ Q B[ /.Bw
— r——=h5, \ »B, = - Y
IT) = B / - \ ,’ — ’ \ I.Bf_’
@) 2 Vi v o ”‘ B] A Y ’/
‘,’ o o-—-o——-oBJ v \"
—L 1 5 | | | i | l
A A, A A A, Ay A A, A A A, A A A Ay A A A
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Example of an Interaction

* Main effect of drawing style:
— F(2,14) = 8.84, p < .01
— Subjects slower with wireframe

3600
style m Intensity +1 std error
g 3400 | const
« Main effect of intensity: Q 3200 +
N
- F(1,7) =13.16, p < .01 = 3000 - mean
— Subjects faster with decreasing % 2800 |
intensity S
i= 2600  decr
(]
« Interaction between drawing g 2400 7
style and intensity: & 2200 %
(4
— F(2,14) =9.38, p < .01 X 2000 | |
— The effect of decreasing wireframe fill wire=+fill
intensity occurs only for the Drawing Style
wireframe drawing style; for fill
and wire+fill, intensity had no
effect
— This completely describes the
main effects discussed above "

Data from [Living et al. 03]




Reporting Statistical Results

* For parametric tests, give degrees of freedom, critical value,
p value:
— F(2,14) = 8.84*, p < .01 (report pre-planned significance value)
— t(8) =4.11, p =.0034 (report exact p value)

— F(8,12) = 5.826403, p = 3.4778689e10-3
(too many insignificant digits)

* Give primary trends and findings in graphs
— Best guide is [Tufte 83]

* Use graphs / tables to give data, and use text to discuss
what the data means

— Avoid giving too much data in running text
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Epilogue

« How do HS experiments fit into the larger scope of
HCI activities?

— Usability engineering, formative evaluation, summative
evaluation, heuristic evaluation, cognitive walkthrough,
domain analysis, field studies, interviews, etc.

e One answer:

— If comparing two visualization alternatives, validity
requires each alternative to have equivalent usability

e Another answer:

— When designing a visualization technique,
HS experiment likely not the first HCI activity
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