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Schedule

8:30-10:10 AM 100 minutes Experimental Design and Analysis Part |

10:10 —10:40 AM 30 minutes Coffee Break

10:40 — 12:10 AM 90 minutes Experimental Design and Analysis Part Il



Motivation and Goals

 Course attendee backgrounds?

o Studying experimental design and analysis at

Mississippi State University:

— PSY 3103 Introduction to Psychological Statistics
— PSY 3314 Experimental Psychology

— PSY 6103 Psychometrics

— PSY 8214 Quantitative Methods In Psychology Il
— PSY 8803 Advanced Quantitative Methods

— |E 6613 Engineering Statistics |

— |E 6623 Engineering Statistics Il

— ST 8114 Statistical Methods

— ST 8214 Design & Analysis Of Experiments

— ST 8853 Advanced Design of Experiments |

— ST 8863 Advanced Design of Experiments I

e 7 undergrad hours; 30 grad hours; 3 departments!



Motivation and Goals

« What can we accomplish in one morning?

» Study subset of basic techniques

— | have found these to be the most applicable to
visualization evaluation

 Focus on intuition behind basic techniques

 Become familiar with basic
concepts and terms

— Facilitate working with collaborators from
psychology, industrial engineering, statistics, etc.



Outline

e Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments



Why Human Subject (HS) Experiments?

 Graphics hardware / software more mature
e Sophisticated interactive techniques possible

* Focus of field:
— Implementing technology — using technology
— Trend at IEEE Virtual Reality, SIGGRAPH

— Called for in NIH-NSF Visualization Research Challenges
Report [Johnson et al. 06]

 Increasingly running HS experiments:

— How do humans perceive, manipulate, cognate with
CG-mediated information?

— Measure utility of visualizations for application domains



Conducting Human-Subject Experiments

« Human subject experiments at IEEE Visualization:

Year Vis Papers % Info Vis papers %
2006 8/63 13% 2/24 8%
2007 3/56 4% 12 1 27 44%

« Human subject experiments at IEEE Virtual Reality:

VRyear papers % sketches % posters %
2003 10/29 | 35% 5/14 | 36%
2004 9/26 | 35% 5/23 | 22%
2005 13/29 | 45% 1/8 13% | 8/15 | 53%
2006 12 /27 | 44% 2/10 20% | 1/10 | 10%
2007 9/26 | 35% 3/15 20% | 5/18 | 28%




Logical Deduction vs. Empiricism

* Logical Deduction
— Analytic solutions in closed form
— Amenable to proof techniques

— Much of computer science fits here
« Computability (what can be calculated?)
« Complexity theory (how efficient is this algorithm?)

 Empirical Inquiry
— Answers questions that cannot be proved
analytically
—Much of science falls into this area

— Antithetical to mathematics, computer science



What is Empiricism?

« The Empirical Method

— Develop a hypothesis, perhaps based on a theory

— Make the hypothesis testable

— Develop an empirical experiment

— Collect and analyze data

— Accept or refute the hypothesis

— Relate the results back to the theory

— If worthy, communicate the results to scientific community

o Statistics:
— Foundation for empirical work; necessary but not sufficient

— Often not useful for managing problems of gathering,
interpreting, and communicating empirical information.



Where is Empiricism Used?

« Humans are very non-analytic

* Fields that study humans:
— Psychology / social sciences
— Industrial engineering
— Ergonomics
— Business / management
— Medicine

* Fields that don’t study humans:

— Agriculture, natural sciences, etc.

« Computing Sciences:
— Human-computer interaction
— Software engineering
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Experimental Validity

« Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Designing Valid Empirical Experiments

 Experimental Validity

—Does experiment really measure what we want it
to measure?

— Do our results really mean what we think
(and hope) they mean?

— Are our results reliable?

* If we run the experiment again, will we get the same
results?

o Will others get the same results?

 Validity is a large topic in empirical inquiry

12



Validity Issue

2D Flow Visualization
Experiment

» Tested different
visualization methods

 Measured subjects’ ability
to locate critical points
— error, response time

. Validity Issue:

— Interested in which
visualization method is most
effective

— How well does what we
measured relate to
“effectiveness?”

13



Experimental Variables

* Independent Variables
—What the experiment is studying

— Occur at different levels
« Example: stereopsis, at the levels of stereo, mono

— Systematically varied by experiment

 Dependent Variables
—What the experiment measures

— Assume dependent variables will be effected by
independent variables

— Must be measurable quantities

 Time, task completion counts, error counts,
survey answers, scores, etc.

« Example: VR navigation performance, in total time
14



Experimental Variables

* Independent variables can vary in two ways
— Between-subjects: each subject sees a different level of
the variable
 Example: 2 of subjects see stereo, > see mono

— Within-subjects: each subject sees all levels of the
variable

« Example: each subject sees both stereo and mono

« Confounding factors (or confounding variables)
— Factors that are not being studied, but will still affect
experiment
« Example: stereo condition less bright than mono condition

— Important to predict and control confounding factors, or
experimental validity will suffer

15



Experimental Design

« Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Experimental Designs

 2x 1 is simplest possible design, with one independent

variable at two levels:

level 1 stereo

level 2 mono

* Important confounding factors for within subject variables:
— Learning effects
— Fatigue effects

« Control these by counterbalancing the design

— Ensure no systematic variation between levels and the order
they are presented to subjects

Subjects 1st condition 2"d condition

1,3,5,7 stereo mono

2,4,6,8 mono stereo .




Factorial Designs

* nx 1 designs generalize the number of levels:

VE terrain type

flat
hilly
mountainous

* Factorial designs generalize number of independent variables
and the number of levels of each variable

« Examples: n x m design, n x m x p design, etc.
« Must watch for factorial explosion of design size!

3 x 2 design: Stereopsis

VE terrain type stereo mono
flat
hilly
mountainous

18



Cells and Repetitions

e Cell: each combination of levels

* Repetitions: typically, the combination of levels at
each cell is repeated a number of times

Stereopsis

VE terrain type stereo mono

flat N
hilly
mountainous

 Example of how this design might be described:
— “A 3 (VE terrain type) by 2 (stereopsis) within-subjects
design, with 4 repetitions of each cell.”

— This means each subject would see 3 x 2 x 4 = 24 total
conditions

— The presentation order would be counterbalanced

19



Counterbalancing

 Addresses time-based confounding factors:
— Within-subjects variables: control learning and fatigue effects

— Between-subjects variables: control calibration drift, weather,
other factors that vary with time

 There are two counterbalancing methods:
— Random permutations

— Systematic variation
« Latin squares are a very useful and popular technique

1 2 1 2 3 1 2 3 4. Latin square properties:
2 1 2 3 1 2 4 1 3 — Every level appears in
every position the same
2x2 :3 1 2: 31 4 72 number of times
1 3 2 4 3 2 1 — Every level is followed by
B B every other level
2 13 4x4 — Every level is preceded
3 2 1 by every other level

6 x 3 (there is no 3 x 3 that has all 3 properties) 20



Counterbalancing Example

o “A 3 (VE terrain type) by 2 (stereopsis) within-
subjects design, with 4 repetitions of each cell.”

 Form Cartesian product of Latin squares
{6 x 3} (VE Terrain Type) ® {2 x 2} (Stereopsis)

» Perfectly counterbalances groups of 12 subjects

Subject Presentation Order

1 1A, 1B, 2A, 2B, 3A, 3B
1B, 1A, 2B, 2A, 3B, 3A
2A, 2B, 3A, 3B, 1A, 1B
2B, 2A, 3B, 3A, 1B, 1A
3A, 3B, 1A, 1B, 2A, 2B
3B, 3A, 1B, 1A, 2B, 2A
1A, 1B, 3A, 3B, 2A, 2B
1B, 1A, 3B, 3A, 2B, 2A
2A, 2B, 1A, 1B, 3A, 3B
2B, 2A, 1B, 1A, 3B, 3A
3A, 3B, 2A, 2B, 1A, 1B
3B, 3A, 2B, 2A, 1B, 1A
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Experimental Desigh Example #1

trial number T 216[217 v, 432
ground plane on off

3
stereo on off on off
drawing style wire fill wire-+fill

+ || alpha const | decr | const | decr | const | decr

ols|2|l5|0ls|le|ls5|o0ls5|2] 5

' ' c | Q]lc|8lc|18lc|18c|8|c]|@
Intensity sls(s|s|s|sls|2|5|S|g]|sS

target position middle far

rp?

repetition

T sv = systemically varied, 2rp = randomly permuted

« All variables within-subject
From [Living et al. 03]



Experimental Design Example #2

w0 Stereo Viewing on off
=k
3
o
> | Control Movement rate position rate position
7]
c
K=)
o Frame of ego | exo | ego | exo | ego | exo | ego | exo
~+ | Reference g g g 9
Q)
(7)) 7)) 7)) 7)) (7)) (7)) 7)) 7))
s o |cave c c c c c c c c
= | 2 g |& | |&8|&|&|&|&
® ® ® ® ® ® ® ®
g c | wall 0 0 0 0 0 0 0 0
@ 7] 7] 7] 7] 7] 7] 7] 7]
m -
c U - (&) (o] = - N N N
o = workbench | | | > = N N N
@ g.. IS P - | | | | |
-—
- 3 desktop ™ o S 3 & X

 Mixed design: some variables between-subject,
others within-subject.

From [Swan et al. 03]



Gathering Data

« Empiricism
 Experimental Validity
 Experimental Design
 Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Dependent Measures

« Workhorse measures:
— Response time, error counts

« Some additional measures (many others exist):
— Critical incidents

— 6 degree-of-freedom tracker trajectory
(head, hand)

— Eye-tracker data
— Answers scored by experts
— Questions answered on Likert scale:

| was able to generate a visualization that tested my hypothesis:

strongly Agree neutral disagree s_trongly
agree disagree

25



Cognitive Analysis Techniques

e Cognitive techniques may yield important
insights for Visualization analysis

« Example of a cognitive analysis:
— Subject uses think out loud protocol
— Session videotaped, perhaps logged
—Log is divided into brief intervals
— Each interval labeled with cognitive state
— Counts of cognitive states are analyzed

 But cognitive techniques give more qualitative
(less quantitative) results

Cognitive analysis from [Wu et al. 96]

26



Pilot Testing a Design

 Experimental designs have to be tested and
iterated (debugged)

* Typical flow:
— 18t run: subjects are you, collaborators
— 2" run: small number of preliminary subjects
— 3" run: subset of real subjects

 With each run, problems are revealed,;
fix problems and iterate

* For later runs, perform data analysis before
gathering additional data

27



Graphing Data

« Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
 Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments

28



Types of Statistics

* Descriptive Statistics
— Describe and explore data

— Summary statistics:
many numbers — few numbers

— All types of graphs and visual representations

— Data analysis begins with descriptive stats
* Understand data distribution
 Test assumptions of significance tests

 Inferential Statistics
— Detect relationships in data
— Significance tests

— Infer population characteristics from sample
characteristics

29



Exploring Data with Graphs

 Histogram common data overview method
median = 59.5 mean =60.26 mode = 62

60 |~

50

Frequency
o) w N
S S S

P
o

37 42 47 52 57 62 67 72 77 82 87 92 97 102107 112 117 122 127
Reaction time (Hundredths of a second)

From [Howell 02] p 21

30



Classifying Data with Histograms

0.04 -

0.03

0.02

0.01

-4.0

0.07 I~
0.06
0.05
0.04
0.03
0.02
0.01

24

_0_

Score

0.8

(a) Normal

10

Score

From [Howell 02] p 28

(c) Negatively skewed

24

20

4.0

25

0.05
0.04
0.03
0.02
0.01

Score
(b) Bimodal

0.07
0.06
0.05 =
0.04 B o
0.03 (SR _
0.02F =
0.01

__ . i & > ’ ” >
Score
(d) Positively skewed
31



From [Howell 02] p 21, 23

(PUOD3s © JO SYIPAIPUNY ) AW} UOTIILIY

Stem-and-Leaf:

Histogram From Actual Data

Frequency
— 2 T = N (=)
< < < < = = © Raw Data Stem Leaf
@l | 1 ' ' 36 37 38 38 39 39 39 40 3s 67
- 40 40 40 41 41 41 42 42 3, 88999
o 42 43 43 43 43 43 44 44 4 0000111
= 44 44 44 45 45 45 45 45 4 22233333
~ | 45 46 46 46 46 46 46 46 af 44444555555
“ | 46 46 46 46 47 47 47 47 4s 66666666666777777777
47 47 47 47 47 48 48 48 4. 888899999
4 48 49 49 49 49 49 50 50 5% 00000111111111111
o 50 50 50 51 51 51 51 51 5t 222222222233333333
=] 51 51 51 51 51 51 51 52 St 4444445555555
o 52 52 52 52 52 52 52 52 55 66666666667777777
52 53 53 53 53 53 53 53 5 88888888888899999999999
= 53 54 54 54 54 54 54 55 6* 0000000000001 1111111111
. 55 55 55 55 55 55 61 220222222222223333333333
= 6f 444444455555555
o0 65 6666666677777777777777
i 6. $89999999
*® 7% 01111
Tt 22222222333
S 7 44444455
° 7s 666677
= 7. 88899
= 8 00011
- 8t 2333
= 8f 5
— 8s 67
1o 8. 8
= 9 0
~ | 9t
= 9f 4455
2 9s
t3 9. 8
High 104; 104; 125

FIGURE 2.4 Stem-and-leaf display for reaction time data
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Stem-and-Leaf:

Histogram From Actual Data
Midterm #1 Grades

O%F O
0% F 1
0% F 2
0% F 3
3% F 47
0% F 5
12% D 6 1789
9% C 7 024
30% B 8 0014458889
42% A 9 01112333455579
0% A 10

Grades from my fall 2007 Analysis of Algorithms class; first midterm
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Boxplot

== Maximum oksenation

-t Upper fence (not drawn)
1 5(1GR)above 75 Ppercertile

=— Maximum obkservation kelow upper fence

1 .Tﬁ} T

75 P percentile
=—— Mean (specifed with SYMBOL1 sttement)

Median
25 hpercentile

Intercuarile +
Han%FIJH}
1 51QR)

~w—— Minimum observaion

- Lower fence {not crawn)
1 51aR)below 25 P percentile

Distance (meters)

Perceived Target Distance vs Referent Distance

50

30

20

10

+ Actual Referent Distance
& Perceived Mean Target Distance x
4 Subjects; 640 Data Points

T T T T T T T T
5.34 10.92 16.50 22.08 27.66 33.24 38.82 44.40
Actual Referent Distance (meters)

« Emphasizes variation and relationship to mean

 Because narrow, can be used to display side-by-
side groups

Data from [Swan et al. 06]
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Example Histogram and Boxplot from Real Data

min value 2\5th 7\5th upper fence max values (outliers)

median - 1453 }— | i | IR T TN T O MOMmOO Mmoo
0.30 1 1]

0.25
mean = 2355

0.20 7

Frequency
o
o

0.10 1

. mm

600 2400 4200 6000 7800 9600 11400 13200 15000
RT_Milliseconds

Data from

[Living et al. 03] 35



We Have Only Scratched the Surface...

* There are a vary large number of graphing techniques

« Tufte’s [83, 90] works are classic, and stat books show many
more examples (e.g. Howell [03]).

RESOLUTION
0 CELL

TIME ( Msec)

‘VW WWW

125 kHz

s And plenty of bad examples!

FREQUENCY

Lots of good examples... From [Tufte 83], p 134, 62
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Descriptive Statistics

 Empiricism
 Experimental Validity
e Usability Engineering
 Experimental Design
 Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics

 Inferential Statistics
— Hypothesis Testing
— Hypothesis Testing Means
— Power
— Analysis of Variance and Factorial Experiments
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Summary Statistics

 Many numbers — few numbers

 Measures of central tendency:
—Mean: average
— Median: middle data value
—Mode: most common data value

 Measures of variability / dispersion:

— Mean absolute deviation
—Variance
— Standard Deviation

38



Populations and Samples

 Population:

— Set containing every possible element that we
want to measure

— Usually a Platonic, theoretical construct
—Mean: y Variance: 02 Standard deviation: o

« Sample:

— Set containing the elements we actually
measure (our subjects)

— Subset of related population

—Mean: X Variance: s2 Standard deviation: s
Number of samples: N

39



Measuring Variability / Dispersion

Mean:

v 2X
N

Variance:

, S x-XJ

S =
N -1

2 Z(X _:U)z

O =
N

Mean absolute deviation:

Z\x —Y\
N

m.a.d. =

Standard deviation:

Jz(x—f)z

N-1

 Standard deviation uses same units as
samples and mean.

« Calculation of population variance o? is
theoretical, because uy almost never
known and the population size N would
be very large (perhaps infinity). 40



Sums of Squares, Degrees of Freedom,
Mean Squares

 Very common terms and concepts:

—\
X — X
o2 _ Z( ) _ SS _sums of squares _ MS (mean squares)
N -1 df  degreesof freedom

« Sums of squares:
— Summed squared deviations from mean

 Degrees of freedom:

— Given a set of N observations used in a calculation, how
many numbers in the set may vary

— Equal to N minus number of means calculated
 Mean squares:

— Sums of squares divided by degrees of freedom
— Another term for variance, used in ANOVA 41



Example: Degrees of Freedom
e Samples: 6,8,10; N=3; X=38

* If mean must remain X = 8;
how many numbers may vary?

« Answer: 2 may vary (2+ 36 + a)/3 =8

—Value of a constrained to keep X=38

 We say that this set has
N — 1 = 2 degrees of freedom (dof, df)

— Generally equal to N minus 1 per mean calculated

42



Hypothesis Testing

« Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Hypothesis Testing

e Goal is to infer population characteristics
from sample characteristics

30

- samples

population ?: b \

Z -
10 s
fJL—M : LLLLLLLL

iy iy Dy i T T Wy Bs Iy T G, 65 2 25 D & &
%00 % 070 %0 00 %0 %0 0 00 %0 %0 %0 Yo 0% %0 %0

Frequency

Std. Dev = 10.56
Mean = 49.]
N =289.00

From [Howell 02], p 78 “



Testable Hypothesis

* General hypothesis: The research question
that motivates the experiment.

* Testable hypothesis: The research
question expressed in a way that can be
measured and studied.

 Generating a good testable hypothesis is a
real skill of experimental design.
— By good, we mean contributes to experimental
validity.
— Skill best learned by studying and critiquing

previous experiments. .



Testable Hypothesis Example

General hypothesis: Stereo will make people more effective
when navigating through a virtual environment (VE).

Testable hypothesis: We measure time it takes for subjects
to navigate through a particular VE, under conditions of
stereo and mono viewing. We hypothesis subjects will be
faster under stereo viewing.

Testable hypothesis requires a measurable quantity:
— Time, task completion counts, error counts, etc.

Some factors effecting experimental validity:

— Is VE representative of something interesting
(e.g., a real-world situation)?

— Is navigation task representative of something interesting?

— Is there an underlying theory of human performance that can
help predict the results? Could our results contribute to this
theory? 46



What Are the Possible Alternatives?

» Let time to navigate be pu_: stereo time; u_: mono time
— Perhaps there are two populations: y, -y, . =d

Ms MUy, (they could be Ms M (they could
close together) be far apart)

— Perhaps there is one population: y, -y =0

I"s’l‘lm 47



Hypothesis Testing Procedure

. Develop testable hypothesis H,: y. -y, =d
— (E.g., subjects faster under stereo viewing)

. Develop null hypothesis H,: y.—p,, =0
— Logical opposite of testable hypothesis

. Construct sampling distribution assuming H, is true.

. Run an experiment and collect samples; yielding sampling
statistic X.

— (E.g., measure subjects under stereo and mono conditions)

. Referring to sampling distribution, calculate conditional
probability of seeing X given H,: p( X | H, ).
— If probability is low (p < 0.05, p =< 0.01), we are unlikely to see X
when H, is true. We reject H,, and embrace H,.

— If probability is not low (p > 0.05), we are likely to see X when
H, is true. We do not reject H,.

48



Data from [Swan et al. 03]

Example 1: VE Navigation with Stereo Viewing

1. Hypothesis H;: .-y, =d
— Subjects faster under stereo viewing.

2. Null hypothesis Hy: p. -, =0
— Subjects same speed whether stereo or mono viewing.

3. Constructed sampling distribution assuming H, is true.

4. Ran an experiment and collected samples:

— 32 subjects, collected 128 samples
— X, =36.431 sec; X, = 34.449 sec; X, - X, =1.983 sec

5. Calculated conditional probability of seeing 1.983 sec given
H,: p( 1.983 sec | H,) = 0.445.

— p = 0.445 not low, we are likely to see 1.983 sec when H, is
true. We do not reject H,.

— This experiment did not tell us that subjects were faster under
stereo viewing.

49



Data from [Living et al. 03]

Example 2: Effect of Intensity on AR
Occluded Layer Perception

. Hypothesis H;: y.—u,=d

— Tested constant and decreasing intensity. Subjects faster
under decreasing intensity.

. Null hypothesis H,: y.—u,=0

— Subjects same speed whether constant or decreasing intensity.

. Constructed sampling distribution assuming H, is true.

. Ran an experiment and collected samples:

— 8 subjects, collected 1728 samples
— X, =2592.4 msec; X, =2339.9 msec; X, - X,= 252.5 msec

. Calculated conditional probability of seeing 252.5 msec

given H,: p( 252.5 msec | H,) = 0.008.

—p=0.008 is low (p =< 0.01); we are unlikely to see 252.5 msec
when H, is true. We reject H,, and embrace H,.

— This experiment suggests that subjects are faster under
decreasing intensity.

50



Some Considerations...
» The conditional probability p( X | H,)

— Much of statistics involves how to calculate this
probability; source of most of statistic’s complexity

— Logic of hypothesis testing the same regardless of how
p( X | H,) is calculated

— If you can calculate p( X | H, ), you can test a hypothesis

e The null hypothesis H,
— H, usually in form f(u,, p,,...)=0

— Gives hypothesis testing a double-negative logic:
assume H, as the opposite of H,, then reject H,

— Philosophy is that can never prove something true, but
can prove it false

— H, usually in form f(u,, y,,...) # 0; we don’t know what
value it will take, but main interest is that it is not 0

51



When We Reject H,

 Calculate a = p( X | H, ), when do we reject H,?
— In psychology, two levels: a < 0.05; a < 0.01
— Other fields have different values

« What can we say when we reject H, at a = 0.008?

— “If H, is true, there is only an 0.008 probability of getting
our results, and this is unlikely.”

e Correct!

— “There is only a 0.008 probability that our result is in
error.”

« Wrong, this statement refers to p( H,), but that’s not what we
calculated.

— “There is only a 0.008 probability that H, could have been
true in this experiment.”

* Wrong, this statement refers to p( H,| X ), but that’s not what
we calculated.

52



When We Don’t Reject H,

« What can we say when we don’t reject H, at
a=0.4457
— “We have proved that H, is true.”

— “Our experiment indicates that H, is true.”

 Wrong, statisticians agree that hypothesis testing cannot
prove H, is true.

» Statisticians do not agree on what failing to reject
H, means.

— Conservative viewpoint (Fisher):

« We must suspend judgment, and cannot say anything about
the truth of H,,.

— Alternative viewpoint (Neyman & Pearson):
 We “accept” H,, and act as if it’s true for now...
« But future data may cause us to change our mind

From [Howell 02], p 99
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Probabilistic Reasoning

* If hypothesis testing was absolute:

— If H, is true, then X cannot occur...however, X has
occurred...therefore H, is false.

— e.g.: If a person is a Martian, then they are not a member of
Congress (true)...this person is a member of
Congress...therefore they are not a Martian. (correct result)

— e.g.: If a person is an American, then they are not a
member of Congress (false)...this person is a member of
Congress...therefore they are not an American. (correct
result because if-then false)

« However, hypothesis testing is probabilistic:

— If H, is true, then Xis highly unlikely...however, X has
occurred...therefore H, is highly unlikely.

— e.g.: If a person is an American, then they are probably not
a member of Congress (true, right?)...this person is a
member of Congress...therefore they are probably not an
American. (correct hypothesis testing reasoning,
but incorrect result)

From [Cohen 94]
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Hypothesis Testing Outcomes

Reject H, Don’t reject H,
correct wrong
H, false a result! type Il error
p=1-p = power P=R
wrong correct
H, true type | error (but wasted time)
p=a p=1-a

 p( X | H,) compared to a, so hypothesis testing involves setting
a (typically 0.05 or 0.01)

 Two ways to be right:

— Find a result

— Fail to find a result and waste time running an experiment
« Two ways to be wrong:

— Type | error: we think we have a result, but we are wrong

— Type Il error: a result was there, but we missed it 55



When Do We Really Believe a Result?

 When we reject H,, we have a result, but:
—It’s possible we made a type | error

—It’s possible our finding is not reliable
« Just an artifact of our particular experiment

« So when do we really believe a result?

— Statistical evidence
 alevel: (p<.05, p<.01, p<.001)
 Power

— Meta-statistical evidence

* Plausible explanation of observed phenomena

— Based on theories of human behavior:
perceptual, cognitive psychology, control theory, etc.

 Repeated results
— Especially by others

56



Hypothesis Testing Means

« Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Hypothesis Testing Means

« How do we calculate a =p( X | H,), when Xis a
mean?

— Calculation possible for other statistics, but most
common for means

 Answer: we refer to a sampling distribution

 We have two conceptual functions:
— Population: unknowable property of the universe

— Distribution: analytically defined function,
has been found to match certain population statistics
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Calculating a = p( X | H, ) with
A Sampling Distribution

« Sampling distributions are analytic functions with area 1

 To calculate a =p( X | H,) given a distribution, we first
calculate the value D, which comes from an equation of the

form: Represents
_ — M assumption
D- (S|ze of effect : f (X )) that H, true
(variability of effect : f(s?,N)) a=areaz|D|
D?
c a=p(X| H,) is equal to:

D?

— Probability of seeing avalue2| D |
— 2 * (area of the distribution to the right of | D |)

If H, true, we expect D to be near central peek of distribution

If D far from central peek, we have reason to reject the idea
that H, is true
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A Distribution for Hypothesis
Testing Means

04

0.3

0.2

0.1

0 |
-4 -3 -2 -1 0 1 2 3 4

 The Standard Normal Distribution (=0, o0=1)
(also called the Z-distribution):

N(X;u,0)=

1
O\ 27T



The Central Limit Theorem

e Full Statement:

— Given population with (u, 02), the sampling
distribution of means drawn from this
population is distributed (u, 6?/n), where n is the
sample size. As n increases, the sampling
distribution of means approaches the normal
distribution.

* Implication:
— As n increases, distribution of means becomes

normal, regardless of how “non-normal” the
population looks.

 How big does n have to be before means
look normally distributed?

—For very “non-normal” data, n = 30.
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Central Limit3Theorem in Action

0301 —-—n=3
30 - _
-—=—n=5
0.257
_ c 25 - n=7
0.20 g n=15
O 20
)
0.15 B 5 15
=)
o0 g 10
L
“ Wl '
0 T ’_I—'il_'_'_'_'— e d i 0 ' : > % )
600 2400 4200 6000 7800 9600 1400 13200 15000 '
RT_Milissconds 950 1950 2950 3950 4950 5950 6950
Time (Milliseconds)
Response time data set A; Plotting 100 means drawn from A at random
N = 3436 data points. Data without replacement, where n is number of
from [Living et al. 03]. samples used to calculate mean.

 This demonstrates:

— As number of samples increases, distribution of means
approaches normal distribution;

— Regardless of how “non-normal” the source distribution is! 62



The t Distribution

 In practice, when H,: y. - u,=0
(two means come from same population),
we calculate a = p( X | H, ) from t distribution, not Z distribution

« Why? Z requires the population parameter o2, but o2 almost
never known. We estimate o2 with s?, but s? biased to
underestimate o2. Thus, t more spread out than Z distribution.

» tdistribution parametric: parameter is df (degrees of freedom)

same as normal
distribution

f(t)

63
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t-Test Example

e Null hypothesis H,: y.—p,,=0
— Subjects same speed whether stereo or mono viewing.

 Ran an experiment and collected samples:
— 32 subjects, collected 128 samples
— n, =64, X, = 36.431 sec, s, = 15.954 sec
—n, =64, X, =34.449 sec, s, = 13.175 sec

— , 2
t(126) = f{s(xl)\l \/ ( ~ X ) —0.766, 3;2) _ (n, _]r-])sj_‘;(nmz_l)sm
 Look up £(126) = 0.766 in a t(126) Area of shaded

t-distribution table: 0.445 distribution regions: 0.445

* Thus, a=p(1.983 sec|H,) =
0.445, and we do not reject H,,.

-0.766 0 0.766

64
Calculation described by [Howell 02], p 202



Power

« Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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Interpreting a, 8, and Power

Reject H, Don’t reject H,
a result! type Il error
H, false p=1-f=power ypp=p
type | error wasted time
H, true p=a p=1-da
* If H, is true: Hy H,
— ais probability we make a
type | error: we think we have a power =
result, but we are wrong 1-8
« If H, is true:
— B is probability we make a
type Il error: a result was there,
but we missed it B
— Power is a more common term Mo H

than 8



Increasing Power by Increasing a

H, H,

 lllustrates a/ power
tradeoff

 Increasing a:
— Increases power
— Decreases type Il error
— Increases type | error

My M4

 Decreasing a: power
— Decreases power
— Increases type Il error
— Decreases type | error B

Mo My
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Increasing Power by Measuring
a Bigger Effect

H, H,
— Power increases

— Type Il error
decreases
— a and type | error stay
the same B

My M4

e If the effect size is
large:

 Unsurprisingly, large H, H,
effects are easier to
detect than small

power
effects

- B

Mo M4



Increasing Power by
Collecting More Data

H, H, H, H,

B

power

Mo H4
* Increasing sample size (N):
— Decreases variance
— Increases power
— Decreases type Il error

— a and type | error stay the

same J p

 There are techniques that Mo M4

give the value of Nrequired . Here, effect size remains the same,
for a certain power level. but variance drops by half.
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Using Power

* Need a, effect size, and sample size for power:

power = f( a, [, — 4|, N)

 Problem for Visualization:

— Effect size |y, — y,| hard to know in our field
* Population parameters estimated from prior studies
« But our field is so new, not many prior studies

— Can find effect sizes in more mature fields

 Post-hoc power analysis:
effect size = | X, — X]
— Estimate from sample statistics

— But this makes statisticians grumble
(e.g. [Howell 02] [Cohen 88])
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Other Uses for Power

1. Number samples needed for certain power level:
N = f( power, a, |y, — py| or | X; — Xi| )

— Number extra samples needed for more powerful result
— Gives “rational basis” for deciding N [Cohen 88]

2. Effect size that will be detectable:
|o — k4] = A N, power, a)

3. Significance level needed:
a=f{ |y, — | or | X, = X;|, N, power )

(1) is the most common power usage
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Arguing the Null Hypothesis

» Cannot directly argue H,: py. - u,, = 0. But
we can argue that |y, — u,| < d.
—Thus, we have bound our effect size by d.

—If d is small, effectively argued null hypothesis.

Ho M

From [Cohen 88], p 16

72



Data from [Living et al. 03]

Example of Arguing H,

« We know GP is effective depth cue,
but can we get close with other graphical cues?

ground plane drawing style opacity intensity mean error*
on all levels both levels both levels 0.144
off wire+fill decreasing decreasing 0.111

*F(1,1870) = 1.002, p = .317
 Our effect size is d = .087 standard deviations

 Where can our experiment bound d?
d( N = 265, power = .95, a=.05) = .31 standard deviations

« This bound is significant at a = .05, 8 = .05, using same logic as
hypothesis testing.
But how meaningful is d 2 .31? Other significant d’s:

37, 12, .093, .19

* Not very meaningful. If we ran an experiment to bound
d 2 .1, how much data would we need?

N( power = .95, a=.05,d=.1) = 2600

» Original study collected N = 3456, so N = 2600 reasonable
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Analysis of Variance and Factorial

Experiments

« Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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ANOVA: Analysis of Variance

* t-test used for comparing two means
— (2 x 1 designs)

« ANOVA used for factorial designs
— Comparing multiple levels (n x 1 designs)

— Comparing multiple independent variables
(n x m, n x m x p), etc.

— Can also compare two levels (2 x 1 designs);
ANOVA can be considered a generalization of a {-Test

* No limit to experimental design size or complexity

 Most widely used statistical test in psychological
research

« ANOVA based on the F distribution;
also called an F-Test
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How ANOVA Works

H, likely H, likely

Null hypothesis H,: y, = u, = u, = uy,; H,: at least one mean differs
Estimate variance between each group: MS, ., cen

— Based on the difference between group means

— If H, is true, accurate estimation

— If H, is false, biased estimation: overestimates variance
Estimate variance within each group: MS ;..

— Treats each group separately

— Accurate estimation whether H is true or false
Calculate F critical value from ratio: F=MS,_,,cen / MSyithin

— If F=1, then accept H,

— If F>> 1, then reject H,
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ANOVA Uses The F Distribution

« Calculate a = p( X | H,) by looking up F critical value in
F-distribution table

* F-distribution parametric: F ( numerator df, denominator df)
* ais area to right of F critical value (one-tailed test)

e Fand tare distributions are related: F(1,q)=t(q)?
Probability density

)
A
1.51¢
Fs0,50
*;? Desired
& upper-tail
1.0¢ F16.16 o area = o
Fyq
F
051
Corresponding
F critical value
0 d - T o= o
0 1 2

3 F, 4 values

From [Saville Wood 91], p 52, and [Devore Peck 86], p 563
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ANOVA Example

° Hypothesis H1: s - + 95% Confidence Intervals

—Platform (Workbench, Desktop, Cave, or N

(3]
o

Wall) will affect user navigation time in

S
(3]

a virtual environment.

* Null hypothesis H,: y, = uy = U, = -

w
a

—Platform will have no effect on user

Time (seconds)
S
o

w
o

navigation time.

N
(3}

 Ran 32 subjects, each subject used

each platform, collected 128 data 20 ‘ ‘ ‘
points. Workbench  Desktop Cave Wall
Platform
Source SS df MS F
Between (platform) 1205.8876 3 401.9625 3.100* | 0.031
Within (P x S) 12059.0950 | 93 129.6677
*p <.05

* Reporting in a paper: F( 3,93 )=3.1,p<.05
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Main Effects and Interactions

* Main Effect
— The effect of a single independent variable

— In previous example, a main effect of platform on user
navigation time: users were slower on the Workbench, relative

to other platforms

 Interaction
— Two or more variables interact
— Often, a 2-way interaction can describe main effects

Interaction

No interaction
z /\
= B z B
g O-—-o—oBl Bl W 1 8 Bl ,OB, I
— r~==B, \ ’BZ £ - 'y
> —————f, ’ - N — ‘ \ »~B
O 2 ’ v T _-?Y “B N
(’ &) o-——o——-oB3 (4 \"
— . | | | I | ‘ |
A A, A A A, Ay A A, A A A, Ay A A, Ay A A, Ay
79
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Example of an Interaction

* Main effect of drawing style:
— F(2,14) = 8.84, p < .01
— Subjects slower with wireframe

3600
style m Intensity +1 std error
g 3400 | const
* Main effect of intensity: S 3200 |
N
- F(1,7) =13.16, p < .01 E 3000 - mean
— _Subjegts faster with decreasing < 2800 |
intensity £
i= 2600 + decr
Q
« Interaction between drawing g 2400
style and intensity: 2. 2200 %
(4
- F(2,14) =9.38, p < .01 X 2000 1 :
— The effect of decreasing wireframe fill wire+fill
intensity occurs only for the Drawing Style
wireframe drawing style; for fill
and wire+fill, intensity had no
effect
— This completely describes the
main effects discussed above 50

Data from [Living et al. 03]




Outline

e Empiricism
 Experimental Validity
 Experimental Design
e Gathering Data
* Describing Data

— Graphing Data

— Descriptive Statistics
 Inferential Statistics

— Hypothesis Testing

— Hypothesis Testing Means

— Power
— Analysis of Variance and Factorial Experiments
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